近期,抖音平台上关于“少帅下飞机”的视频突然走红,引发了网友们的广泛参与和创意发挥。伴随着一句流行语“留给少帅的空间不多了”,我也决定加入这场创作热潮,尝试以两种不同的方式对“少帅下飞机”视频进行图像绘制:分别采用了opencv技术和matplotlib工具,以下是通过这两种方法生成的图片展示效果:
oepncv:
图1 opencv绘制效果图
matplotlib:
图2 matplotlib绘制效果图
话不多说,下面开始上源码,各位也可以对参数进行微调,达到自己喜欢的效果。
opencv版本源码:
import time
import cv2
import numpy as np
# 膨胀、腐蚀、膨胀
def fun(iamge):
image = iamge.copy()
kernel = np.ones((5, 5), np.uint8)
dilated_image = cv2.dilate(image, kernel, iterations=1)
eroded_image = cv2.erode(dilated_image, kernel, iterations=1)
eroded_image = cv2.dilate(eroded_image, kernel, iterations=1)
return eroded_image
# 视频地址:https://v3-web.douyinvod.com/a1a0f9d25066d3ecbae9001c85b110c5/6710a7fa/video/tos/cn/tos-cn-ve-15/ooFZNIgEDHXVIBhfgEfsA5QOoF6FBmAA11z9Vk/?a=6383&ch=26&cr=3&dr=0&lr=all&cd=0%7C0%7C0%7C3&cv=1&br=314&bt=314&cs=2&ds=3&ft=AJkeU_TERR0sTlC42Dg2Nc0iPMgzbLzCj61U_40CQ9iJNv7TGW&mime_type=video_mp4&qs=15&rc=ZGc7ZzQ3PGk4NjM5MzY7OEBpanlpanQ5cnI7czMzNGkzM0AuYTAxXzFjNS4xNi4vNDYvYSNtNWhyMmQ0XmZgLS1kLWFzcw%3D%3D&btag=80000e00018000&cquery=100w_100B_100x_100z_100o&dy_q=1729133995&feature_id=c6de0308cacfd993ef282c8e1c646267&l=20241017105955F7103A42D4D26D570BCF&__vid=7378168942000442633
cap = cv2.VideoCapture('shaoshuai.mp4') # 读取视频
while True:
ret, frame = cap.read()
if not ret:
print("无法获取帧")
break
frame = cv2.resize(frame, (450, 400))
gray_image = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 转为灰度图
edges = cv2.Canny(gray_image, 60, 160) # 边缘检测
edges2 = fun(edges) # 腐蚀膨胀等操作
_, binary_edges = cv2.threshold(edges, 40, 255, cv2.THRESH_BINARY_INV) # 图像二值化、黑白反转
_, binary_edges2 = cv2.threshold(edges2, 60, 255, cv2.THRESH_BINARY_INV) # 图像二值化、黑白反转
# 将图片转为三色通道方便缝合
gray_image = cv2.cvtColor(gray_image, cv2.COLOR_GRAY2BGR)
edges = cv2.cvtColor(edges, cv2.COLOR_GRAY2BGR)
edges2 = cv2.cvtColor(edges2, cv2.COLOR_GRAY2BGR)
binary_edges = cv2.cvtColor(binary_edges, cv2.COLOR_GRAY2BGR)
binary_edges2 = cv2.cvtColor(binary_edges2, cv2.COLOR_GRAY2BGR)
# 第一行视频缝合
rows = cv2.hconcat([frame, edges])
rows = cv2.hconcat([rows, edges2])
# 第二行视频缝合
rows2 = cv2.hconcat([gray_image, binary_edges])
rows2 = cv2.hconcat([rows2, binary_edges2])
# 两行视频缝合
show = cv2.vconcat([rows, rows2])
cv2.imshow('shuai', show)
time.sleep(0.01)
# 按 'q' 键退出
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# 释放摄像头并关闭窗口
cap.release()
cv2.destroyAllWindows()
matplotlib版本源码:
import cv2
import matplotlib
import numpy as np
import matplotlib.pyplot as plt
matplotlib.use('TkAgg')
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来显示负号
# 视频地址:https://v3-web.douyinvod.com/a1a0f9d25066d3ecbae9001c85b110c5/6710a7fa/video/tos/cn/tos-cn-ve-15/ooFZNIgEDHXVIBhfgEfsA5QOoF6FBmAA11z9Vk/?a=6383&ch=26&cr=3&dr=0&lr=all&cd=0%7C0%7C0%7C3&cv=1&br=314&bt=314&cs=2&ds=3&ft=AJkeU_TERR0sTlC42Dg2Nc0iPMgzbLzCj61U_40CQ9iJNv7TGW&mime_type=video_mp4&qs=15&rc=ZGc7ZzQ3PGk4NjM5MzY7OEBpanlpanQ5cnI7czMzNGkzM0AuYTAxXzFjNS4xNi4vNDYvYSNtNWhyMmQ0XmZgLS1kLWFzcw%3D%3D&btag=80000e00018000&cquery=100w_100B_100x_100z_100o&dy_q=1729133995&feature_id=c6de0308cacfd993ef282c8e1c646267&l=20241017105955F7103A42D4D26D570BCF&__vid=7378168942000442633
cap = cv2.VideoCapture('shaoshuai.mp4') # 输入视频名称读取帧
fig = plt.figure(figsize=(12,8)) # 生成画布
plt.ion() # 打开交互模式
while True:
fig.clf() # 清空当前Figure对象
ret, frame = cap.read()
if not ret:
print("无法获取帧")
break
image = cv2.cvtColor(frame, cv2.IMREAD_GRAYSCALE)
# 使用Canny算法进行边缘检测
edges = cv2.Canny(image, 60, 140)
smoothed_edges = cv2.GaussianBlur(edges, (5, 5), 0)
# 获取边缘像素点的坐标
edge_coordinates = np.argwhere(smoothed_edges > 0)
# 提取x和y坐标
x_coordinates = edge_coordinates[:, 1]
y_coordinates = edge_coordinates[:, 0]
# 绘制散点图
plt.scatter(x_coordinates, y_coordinates, color='mediumblue', s=0.01)
# 设置xy轴范围
plt.xlim(0, 1000)
plt.ylim(750, 0)
# 标题
plt.title('少帅下飞机',fontsize=16,color='blue')
plt.pause(0.0001)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
plt.ioff()
plt.show()
# 释放摄像头并关闭窗口
cap.release()
cv2.destroyAllWindows()