迁移学习(Transfer Learning)简介

迁移学习(transfer)

1.概念

迁移学习定义:迁移学习是指利用数据、任务或模型之间的相似性,将在旧领域(源领域)学习过的模型应用于新领域(目标领域)的一种学习过程。这种方法充分利用了已有的数据和模型资源,减少了目标任务对大量新数据的依赖,加快了模型训练速度,并提高了模型的泛化能力。

例如,我们学习过羽毛球,再去学网球就能够发现两种球类的共性,利用我们学习羽毛球的经验,我们学习网球就会更快。那转换到机器学习中,便可以利用在源领域学习的模型,将其应用在新领域(目标领域)中,加快了模型训练速度(学习速度)。(例如在源领域模型中已经训练好的特征提取模块,我们可以直接用于在新领域中进行特征提取,训练的时候可以不用更新该模块的权重,减少了计算量,加快了学习速度。并且模块的性能因为在源领域中已经得到验证,当源域与目标域差别不大时,模块的性能在新领域中通常表现不会很差)

源领域:包含大量训练数据和标签,一般用(Source  Domain)来表示。

目标领域:数据量少,一般标签缺少或者无标签。用表示(Target  Domain)

任务:及模型学习的结果,如可以进行图像分类或检测。

<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值