Homogeneous function

For homogeneous linear maps, see Graded vector space § Homomorphisms.

In mathematics, a homogeneous function is a function of several variables such that, if all its arguments are multiplied by a scalar, then its value is multiplied by some power of this scalar, called the degree of homogeneity, or simply the degree; that is, if k k k is an integer, a function f f f of n n n variables is homogeneous of degree k k k if
f ( s x 1 , … , s x n ) = s k f ( x 1 , … , x n ) {\displaystyle f(sx_{1},\ldots ,sx_{n})=s^{k}f(x_{1},\ldots ,x_{n})} f(sx1,,sxn)=skf(x1,,xn)
for every x 1 , … , x n , {\displaystyle x_{1},\ldots ,x_{n},} x1,,xn,, and s ≠ 0. {\displaystyle s\neq 0.} s=0.

For example, a homogeneous polynomial of degree k k k defines a homogeneous function of degree k k k.

The above definition extends to functions whose domain and codomain are vector spaces over a field F F F: a function f : V → W {\displaystyle f:V\to W} f:VW between two F F F-vector space is homogeneous of degree k {\displaystyle k} k if
f ( s v ) = s k f ( v ) ( 1 ) {\displaystyle f(s\mathbf {v} )=s^{k}f(\mathbf {v} )} \quad \quad \quad (1) f(sv)=skf(v)(1)
for all nonzero s ∈ F {\displaystyle s\in F} sF and v ∈ V . {\displaystyle v\in V.} vV. This definition is often further generalized to functions whose domain is not V V V, but a cone in V V V, that is, a subset C C C of V V V such that v ∈ C {\displaystyle \mathbf {v} \in C} vC implies s v ∈ C {\displaystyle s\mathbf {v} \in C} svC for every nonzero scalar s s s.

In the case of functions of several real variables and real vector spaces, a slightly more general form of homogeneity called positive homogeneity is often considered, by requiring only that the above identities hold for s > 0 , {\displaystyle s>0,} s>0, and allowing any real number k k k as a degree of homogeneity. Every homogeneous real function is positively homogeneous. The converse is not true, but is locally true in the sense that (for integer degrees) the two kinds of homogeneity cannot be distinguished by considering the behavior of a function near a given point.

A norm over a real vector space is an example of a positively homogeneous function that is not homogeneous. A special case is the absolute value of real numbers. The quotient of two homogeneous polynomials of the same degree gives an example of a homogeneous function of degree zero. This example is fundamental in the definition of projective schemes.

1 Definitions

The concept of a homogeneous function was originally introduced for functions of several real variables. With the definition of vector spaces at the end of 19th century, the concept has been naturally extended to functions between vector spaces, since a tuple of variable values can be considered as a coordinate vector. It is this more general point of view that is described in this article.

There are two commonly used definitions. The general one works for vector spaces over arbitrary fields, and is restricted to degrees of homogeneity that are integers.

The second one supposes to work over the field of real numbers, or, more generally, over an ordered field. This definition restricts to positive values the scaling factor that occurs in the definition, and is therefore called positive homogeneity, the qualificative positive being often omitted when there is no risk of confusion. Positive homogeneity leads to consider more functions as homogeneous. For example, the absolute value and all norms are positively homogeneous functions that are not homogeneous.

The restriction of the scaling factor to real positive values allows also considering homogeneous functions whose degree of homogeneity is any real number.

1.1 General homogeneity

Let V V V and W W W be two vector spaces over a field F F F. A linear cone in V V V is a subset C C C of V V V such that s x ∈ C {\displaystyle sx\in C} sxC for all x ∈ C {\displaystyle x\in C} xC and all nonzero {\displaystyle s\in F.}{\displaystyle s\in F.}

A homogeneous function f f f from V V V to W W W is a partial function from V V V to W W W that has a linear cone C C C as its domain, and satisfies
f ( s x ) = s k f ( x ) {\displaystyle f(sx)=s^{k}f(x)} f(sx)=skf(x)
for some integer k k k, every x ∈ C , {\displaystyle x\in C,} xC, and every nonzero s ∈ F . {\displaystyle s\in F.} sF. The integer k k k is called the degree of homogeneity, or simply the degree of f f f.

A typical example of a homogeneous function of degree k k k is the function defined by a homogeneous polynomial of degree k k k. The rational function defined by the quotient of two homogeneous polynomials is a homogeneous function; its degree is the difference of the degrees of the numerator and the denominator; its cone of definition is the linear cone of the points where the value of denominator is not zero.

Homogeneous functions play a fundamental role in projective geometry since any homogeneous function f f f from V V V to W W W defines a well-defined function between the projectivizations of V V V and W W W. The homogeneous rational functions of degree zero (those defined by the quotient of two homogeneous polynomial of the same degree) play an essential role in the Proj construction of projective schemes.

1.2 Positive homogeneity

When working over the real numbers, or more generally over an ordered field, it is commonly convenient to consider positive homogeneity, the definition being exactly the same as that in the preceding section, with “nonzero s s s” replaced by “ s > 0 s > 0 s>0” in the definitions of a linear cone and a homogeneous function.

This change allow considering (positively) homogeneous functions with any real number as their degrees, since exponentiation with a positive real base is well defined.

Even in the case of integer degrees, there are many useful functions that are positively homogeneous without being homogeneous. This is, in particular, the case of the absolute value function and norms, which are all positively homogeneous of degree 1 1 1. They are not homogeneous since ∣ − x ∣ = ∣ x ∣ ≠ − ∣ x ∣ {\displaystyle |-x|=|x|\neq -|x|} x=x=x if x ≠ 0. {\displaystyle x\neq 0.} x=0. This remains true in the complex case, since the field of the complex numbers C {\displaystyle \mathbb {C} } C and every complex vector space can be considered as real vector spaces.

Euler’s homogeneous function theorem is a characterization of positively homogeneous differentiable functions, which may be considered as the fundamental theorem on homogeneous functions.

2 Examples

在这里插入图片描述

A homogeneous function is not necessarily continuous, as shown by this example. This is the function f {\displaystyle f} f defined by f ( x , y ) = x {\displaystyle f(x,y)=x} f(x,y)=x if x y > 0 {\displaystyle xy>0} xy>0 and f ( x , y ) = 0 {\displaystyle f(x,y)=0} f(x,y)=0 if x y ≤ 0. {\displaystyle xy\leq 0.} xy0. This function is homogeneous of degree 1 1 1, that is, f ( s x , s y ) = s f ( x , y ) {\displaystyle f(sx,sy)=sf(x,y)} f(sx,sy)=sf(x,y) for any real numbers s , x , y . {\displaystyle s,x,y.} s,x,y. It is discontinuous at y = 0 , x ≠ 0. {\displaystyle y=0,x\neq 0.} y=0,x=0.

2.1 Simple example

The function f ( x , y ) = x 2 + y 2 {\displaystyle f(x,y)=x^{2}+y^{2}} f(x,y)=x2+y2 is homogeneous of degree 2 2 2:

f ( t x , t y ) = ( t x ) 2 + ( t y ) 2 = t 2 ( x 2 + y 2 ) = t 2 f ( x , y ) . {\displaystyle f(tx,ty)=(tx)^{2}+(ty)^{2}=t^{2}\left(x^{2}+y^{2}\right)=t^{2}f(x,y).} f(tx,ty)=(tx)2+(ty)2=t2(x2+y2)=t2f(x,y).

2.2 Absolute value and norms

The absolute value of a real number is a positively homogeneous function of degree 1 1 1, which is not homogeneous, since ∣ s x ∣ = s ∣ x ∣ {\displaystyle |sx|=s|x|} sx=sx if s > 0 , {\displaystyle s>0,} s>0, and ∣ s x ∣ = − s ∣ x ∣ {\displaystyle |sx|=-s|x|} sx=sx if s < 0. {\displaystyle s<0.} s<0.

The absolute value of a complex number is a positively homogeneous function of degree 1 {\displaystyle 1} 1 over the real numbers (that is, when considering the complex numbers as a vector space over the real numbers). It is not homogeneous, over the real numbers as well as over the complex numbers.

More generally, every norm and seminorm is a positively homogeneous function of degree 1 1 1 which is not a homogeneous function. As for the absolute value, if the norm or semi-norm is defined on a vector space over the complex numbers, this vector space has to be considered as vector space over the real number for applying the definition of a positively homogeneous function.

2.3 Linear functions

Any linear map f : V → W {\displaystyle f:V\to W} f:VW between vector spaces over a field F F F is homogeneous of degree 1 1 1, by the definition of linearity:
f ( α v ) = α f ( v ) {\displaystyle f(\alpha \mathbf {v} )=\alpha f(\mathbf {v} )} f(αv)=αf(v)
for all α ∈ F {\displaystyle \alpha \in {F}} αF and v ∈ V . {\displaystyle v\in V.} vV.

Similarly, any multilinear function f : V 1 × V 2 × ⋯ V n → W {\displaystyle f:V_{1}\times V_{2}\times \cdots V_{n}\to W} f:V1×V2×VnW is homogeneous of degree n , {\displaystyle n,} n, by the definition of multilinearity:
f ( α v 1 , … , α v n ) = α n f ( v 1 , … , v n ) {\displaystyle f\left(\alpha \mathbf {v} _{1},\ldots ,\alpha \mathbf {v} _{n}\right)=\alpha ^{n}f(\mathbf {v} _{1},\ldots ,\mathbf {v} _{n})} f(αv1,,αvn)=αnf(v1,,vn)
for all α ∈ F {\displaystyle \alpha \in {F}} αF and v 1 ∈ V 1 , v 2 ∈ V 2 , … , v n ∈ V n . {\displaystyle v_{1}\in V_{1},v_{2}\in V_{2},\ldots ,v_{n}\in V_{n}.} v1V1,v2V2,,vnVn.

2.4 Homogeneous polynomials

Main article: Homogeneous polynomial

Monomials in n {\displaystyle n} n variables define homogeneous functions f : F n → F . {\displaystyle f:\mathbb {F} ^{n}\to \mathbb {F} .} f:FnF. For example,
f ( x , y , z ) = x 5 y 2 z 3   {\displaystyle f(x,y,z)=x^{5}y^{2}z^{3}\,} f(x,y,z)=x5y2z3
is homogeneous of degree 10 10 10 since
f ( α x , α y , α z ) = ( α x ) 5 ( α y ) 2 ( α z ) 3 = α 10 x 5 y 2 z 3 = α 10 f ( x , y , z ) .   {\displaystyle f(\alpha x,\alpha y,\alpha z)=(\alpha x)^{5}(\alpha y)^{2}(\alpha z)^{3}=\alpha ^{10}x^{5}y^{2}z^{3}=\alpha ^{10}f(x,y,z).\,} f(αx,αy,αz)=(αx)5(αy)2(αz)3=α10x5y2z3=α10f(x,y,z).
The degree is the sum of the exponents on the variables; in this example, 10 = 5 + 2 + 3. {\displaystyle 10=5+2+3.} 10=5+2+3.

A homogeneous polynomial is a polynomial made up of a sum of monomials of the same degree. For example,
x 5 + 2 x 3 y 2 + 9 x y 4 {\displaystyle x^{5}+2x^{3}y^{2}+9xy^{4}} x5+2x3y2+9xy4
is a homogeneous polynomial of degree 5 5 5. Homogeneous polynomials also define homogeneous functions.

Given a homogeneous polynomial of degree k {\displaystyle k} k with real coefficients that takes only positive values, one gets a positively homogeneous function of degree k / d {\displaystyle k/d} k/d by raising it to the power 1 / d . {\displaystyle 1/d.} 1/d. So for example, the following function is positively homogeneous of degree 1 1 1 but not homogeneous:
( x 2 + y 2 + z 2 ) 1 2 . {\displaystyle \left(x^{2}+y^{2}+z^{2}\right)^{\frac {1}{2}}.} (x2+y2+z2)21.

2.5 Min/max

For every set of weights w 1 , … , w n , {\displaystyle w_{1},\dots ,w_{n},} w1,,wn, the following functions are positively homogeneous of degree 1 1 1, but not homogeneous:
min ⁡ ( x 1 w 1 , … , x n w n ) {\displaystyle \min \left({\frac {x_{1}}{w_{1}}},\dots ,{\frac {x_{n}}{w_{n}}}\right)} min(w1x1,,wnxn) (Leontief utilities)
max ⁡ ( x 1 w 1 , … , x n w n ) {\displaystyle \max \left({\frac {x_{1}}{w_{1}}},\dots ,{\frac {x_{n}}{w_{n}}}\right)} max(w1x1,,wnxn)

2.6 Rational functions

Rational functions formed as the ratio of two homogeneous polynomials are homogeneous functions in their domain, that is, off of the linear cone formed by the zeros of the denominator. Thus, if f {\displaystyle f} f is homogeneous of degree m {\displaystyle m} m and g {\displaystyle g} g is homogeneous of degree n , {\displaystyle n,} n, then f / g {\displaystyle f/g} f/g is homogeneous of degree m − n {\displaystyle m-n} mn away from the zeros of g . {\displaystyle g.} g.

2.7 Non-examples

The homogeneous real functions of a single variable have the form x ↦ c x k {\displaystyle x\mapsto cx^{k}} xcxk for some constant c c c. So, the affine function x ↦ x + 5 , {\displaystyle x\mapsto x+5,} xx+5, the natural logarithm x ↦ ln ⁡ ( x ) , {\displaystyle x\mapsto \ln(x),} xln(x), and the exponential function x ↦ e x {\displaystyle x\mapsto e^{x}} xex are not homogeneous.

3 Euler’s theorem

4 Application to differential equations

5 Generalizations

5.1 Homogeneity under a monoid action

5.2 Distributions (generalized functions)

6 Glossary of name variants

7 See also

8 Notes

9 References

10 External links

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值