Nilpotent

In mathematics, an element {\displaystyle x}x of a ring {\displaystyle R}R is called nilpotent if there exists some positive integer {\displaystyle n}n, called the index (or sometimes the degree), such that {\displaystyle x^{n}=0}{\displaystyle x^{n}=0}.

The term was introduced by Benjamin Peirce in the context of his work on the classification of algebras.[1]

1 Examples

This definition can be applied in particular to square matrices. The matrix
{\displaystyle A={\begin{pmatrix}0&1&0\0&0&1\0&0&0\end{pmatrix}}}A={\begin{pmatrix}0&1&0\0&0&1\0&0&0\end{pmatrix}}
is nilpotent because {\displaystyle A{3}}A{3}. See nilpotent matrix for more.
In the factor ring {\displaystyle \mathbb {Z} /9\mathbb {Z} }{\displaystyle \mathbb {Z} /9\mathbb {Z} }, the equivalence class of 3 is nilpotent because 32 is congruent to 0 modulo 9.
Assume that two elements {\displaystyle a}a and {\displaystyle b}b in a ring {\displaystyle R}R satisfy {\displaystyle ab=0}ab=0. Then the element {\displaystyle c=ba}{\displaystyle c=ba} is nilpotent as
{\displaystyle {\begin{aligned}c{2}&=(ba){2}\&=b(ab)a\&=0.\\end{aligned}}}{\displaystyle {\begin{aligned}c{2}&=(ba){2}\&=b(ab)a\&=0.\\end{aligned}}}
An example with matrices (for a, b):
{\displaystyle A={\begin{pmatrix}0&1\0&1\end{pmatrix}},;;B={\begin{pmatrix}0&1\0&0\end{pmatrix}}.}{\displaystyle A={\begin{pmatrix}0&1\0&1\end{pmatrix}},;;B={\begin{pmatrix}0&1\0&0\end{pmatrix}}.}
Here {\displaystyle AB=0}{\displaystyle AB=0} and {\displaystyle BA=B}{\displaystyle BA=B}.
By definition, any element of a nilsemigroup is nilpotent.

2 Properties

No nilpotent element can be a unit (except in the trivial ring, which has only a single element 0 = 1). All nilpotent elements are zero divisors.

An {\displaystyle n\times n}n\times n matrix {\displaystyle A}A with entries from a field is nilpotent if and only if its characteristic polynomial is {\displaystyle t{n}}t{n}.

If {\displaystyle x}x is nilpotent, then {\displaystyle 1-x}1-x is a unit, because {\displaystyle x^{n}=0}{\displaystyle x^{n}=0} entails

{\displaystyle (1-x)(1+x+x^{2}+\cdots +x{n-1})=1-x{n}=1.}{\displaystyle (1-x)(1+x+x^{2}+\cdots +x{n-1})=1-x{n}=1.}
More generally, the sum of a unit element and a nilpotent element is a unit when they commute.

3 Commutative rings

The nilpotent elements from a commutative ring {\displaystyle R}R form an ideal {\displaystyle {\mathfrak {N}}}{\mathfrak {N}}; this is a consequence of the binomial theorem. This ideal is the nilradical of the ring. Every nilpotent element {\displaystyle x}x in a commutative ring is contained in every prime ideal {\displaystyle {\mathfrak {p}}}{\mathfrak {p}} of that ring, since {\displaystyle x^{n}=0\in {\mathfrak {p}}}x^{n}=0\in {\mathfrak {p}}. So {\displaystyle {\mathfrak {N}}}{\mathfrak {N}} is contained in the intersection of all prime ideals.

If {\displaystyle x}x is not nilpotent, we are able to localize with respect to the powers of {\displaystyle x}x: {\displaystyle S={1,x,x{2},…}}S={1,x,x{2},…} to get a non-zero ring {\displaystyle S{-1}R}S{-1}R. The prime ideals of the localized ring correspond exactly to those prime ideals {\displaystyle {\mathfrak {p}}}{\mathfrak {p}} of {\displaystyle R}R with {\displaystyle {\mathfrak {p}}\cap S=\emptyset }{\mathfrak {p}}\cap S=\emptyset .[2] As every non-zero commutative ring has a maximal ideal, which is prime, every non-nilpotent {\displaystyle x}x is not contained in some prime ideal. Thus {\displaystyle {\mathfrak {N}}}{\mathfrak {N}} is exactly the intersection of all prime ideals.[3]

A characteristic similar to that of Jacobson radical and annihilation of simple modules is available for nilradical: nilpotent elements of ring {\displaystyle R}R are precisely those that annihilate all integral domains internal to the ring {\displaystyle R}R (that is, of the form {\displaystyle R/I}R/I for prime ideals {\displaystyle I}I). This follows from the fact that nilradical is the intersection of all prime ideals.

4 Nilpotent elements in Lie algebra

Let {\displaystyle {\mathfrak {g}}}{\mathfrak {g}} be a Lie algebra. Then an element of {\displaystyle {\mathfrak {g}}}{\mathfrak {g}} is called nilpotent if it is in {\displaystyle [{\mathfrak {g}},{\mathfrak {g}}]}[{\mathfrak {g}},{\mathfrak {g}}] and {\displaystyle \operatorname {ad} x}\operatorname {ad}x is a nilpotent transformation. See also: Jordan decomposition in a Lie algebra.

5 Nilpotency in physics

Any ladder operator in a finite dimensional space is nilpotent. They represent creation and annihilation operators, which transform from one state to another, for example the raising and lowering Pauli matrices {\displaystyle \sigma _{\pm }=(\sigma _{x}\pm i\sigma _{y})/2}{\displaystyle \sigma _{\pm }=(\sigma _{x}\pm i\sigma _{y})/2}.

An operand {\displaystyle Q}Q that satisfies {\displaystyle Q^{2}=0}{\displaystyle Q^{2}=0} is nilpotent. Grassmann numbers which allow a path integral representation for Fermionic fields are nilpotents since their squares vanish. The BRST charge is an important example in physics.

As linear operators form an associative algebra and thus a ring, this is a special case of the initial definition.[4][5] More generally, in view of the above definitions, an operator {\displaystyle Q}Q is nilpotent if there is {\displaystyle n\in \mathbb {N} }n\in \mathbb{N} such that {\displaystyle Q^{n}=0}{\displaystyle Q^{n}=0} (the zero function). Thus, a linear map is nilpotent iff it has a nilpotent matrix in some basis. Another example for this is the exterior derivative (again with {\displaystyle n=2}n=2). Both are linked, also through supersymmetry and Morse theory,[6] as shown by Edward Witten in a celebrated article.[7]

The electromagnetic field of a plane wave without sources is nilpotent when it is expressed in terms of the algebra of physical space.[8] More generally, the technique of microadditivity (which can used to derive theorems in physics) makes use of nilpotent or nilsquare infinitesimals and is part smooth infinitesimal analysis.

6 Algebraic nilpotents

The two-dimensional dual numbers contain a nilpotent space. Other algebras and numbers that contain nilpotent spaces include split-quaternions (coquaternions), split-octonions, biquaternions {\displaystyle \mathbb {C} \otimes \mathbb {H} }{\mathbb C}\otimes {\mathbb H}, and complex octonions {\displaystyle \mathbb {C} \otimes \mathbb {O} }{\mathbb C}\otimes {\mathbb O}. If a nilpotent infinitesimal is a variable tending to zero, it can be shown that any sum of terms for which it is the subject is an indefinitely small proportion of the first order term.

7 See also

Idempotent element (ring theory)
Unipotent
Reduced ring
Nil ideal

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值