7.3 The Jordan Form

Jordan Form是一种比upper triangular更为简单的形式,是结合了之前对幂零矩阵和primary decomposition theorem的结果而成。Jordan form在讨论一些抽象的问题时特别简便,但如何从一个operator得到其Jordan form的矩阵(即求出对应的一组基或者相似矩阵)貌似是非常麻烦的。这一节很多是讨论Jordan form理论性的应用。

Exercises

1.Let N 1 N_1 N1 and N 2 N_2 N2 be 3 × 3 3\times 3 3×3 nilpotent matrices over the field F F F. Prove that N 1 N_1 N1 and N 2 N_2 N2 are similar if and only if they have the same minimal polynomial.
Solution: If N 1 N_1 N1 and N 2 N_2 N2 are similar, then they are similar to the same matrix which is in the rational form, thus have the same minimal polynomial.
Conversely, let p p p be the minimal polynomial for N 1 N_1 N1 and N 2 N_2 N2, then since both are nilpotent, p p p can only be x , x 2 x,x^2 x,x2 or x 3 x^3 x3. If p = x p=x p=x, then N 1 = N 2 = 0 N_1=N_2=0 N1=N2=0 and are similar. If p = x 2 p=x^2 p=x2, then both N 1 N_1 N1 and N 2 N_2 N2 are similar to the matrix [ 0 0 0 1 0 0 0 0 0 ] \begin{bmatrix}0&0&0\\1&0&0\\0&0&0\end{bmatrix} 010000000. If p = x 3 p=x^3 p=x3, then both N 1 N_1 N1 and N 2 N_2 N2 are similar to the matrix [ 0 0 0 1 0 0 0 1 0 ] \begin{bmatrix}0&0&0\\1&0&0\\0&1&0\end{bmatrix} 010001000.

2.Use the result of Exercise 1 and the Jordan Form the prove the following: Let A A A and B B B be n × n n\times n n×n matrices over the field F F F which have the same characteristic polynomial
f = ( x − c 1 ) d 1 ⋯ ( x − c k ) d k f=(x-c_1)^{d_1}\cdots(x-c_k)^{d_k} f=(xc1)d1(xck)dk
and the same minimal polynomial. If no d i d_i di is greater than 3 3 3, then A A A and B B B are similar.
Solution: We can see that A A A and B B B are separately similar to the matrix
A = [ A 1 0 ⋯ 0 0 A 2 ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ A k ] , B = [ B 1 0 ⋯ 0 0 B 2 ⋯ 0 ⋮ ⋮ ⋮ 0 0 ⋯ B k ] A=\begin{bmatrix}A_1&0&\cdots&0\\0&A_2&\cdots&0\\{\vdots}&\vdots&&\vdots\\0&0&\cdots&A_k\end{bmatrix},B=\begin{bmatrix}B_1&0&\cdots&0\\0&B_2&\cdots&0\\{\vdots}&\vdots&&\vdots\\0&0&\cdots&B_k\end{bmatrix} A=A1000A2000Ak,B=B1000B2000Bk
where each A i , B i A_i,B_i Ai,Bi are d i × d i d_i\times d_i di×di matrices. Since d i d_i di is no greater than 3 3 3, the minimal polynomial for A A A and B B B are the same, use Exercise 1 we know A i A_i Ai is similar to B i B_i Bi, and the conclusion follows.

3.If A A A is a complex 5 × 5 5\times 5 5×5 matrix with characteristic polynomial f = ( x − 2 ) 3 ( x + 7 ) 2 f=(x-2)^3(x+7)^2 f=(x2)3(x+7)2, and minimal polynomial p = ( x − 2 ) 2 ( x + 7 ) p=(x-2)^2(x+7) p=(x2)2(x+7), what is the Jordan form for A A A?
Solution: The Jordan form for A A A is
[ 2 0 0 0 0 1 2 0 0 0 0 0 2 0 0 0 0 0 − 7 0 0 0 0 0 − 7 ] \begin{bmatrix}2&0&0&0&0\\1&2&0&0&0\\0&0&2&0&0\\0&0&0&-7&0\\0&0&0&0&-7\end{bmatrix} 2100002000002000007000007

4.How many possible Jordan forms are there for a 6 × 6 6\times 6 6×6 complex matrix with characteristic polynomial ( x + 2 ) 4 ( x − 1 ) 2 (x+2)^4(x-1)^2 (x+2)4(x1)2?
Solution: The Jordan form of this matrix can be written as [ A 1 0 0 A 2 ] \begin{bmatrix}A_1&0\\0&A_2\end{bmatrix} [A100A2], where A 1 A_1 A1 is 4 × 4 4\times 4 4×4 matrix and A 2 A_2 A2 is 2 × 2 2\times 2 2×2 matrix. A 2 A_2 A2 has two possible forms, corresponding to the minimal polynomial for the subspace W 2 = null  ( T − I ) W_2=\text{null }(T-I) W2=null (TI) being x − 1 x-1 x1 or ( x − 1 ) 2 (x-1)^2 (x1)2.
For A 1 A_1 A1, if the minimal polynomial p p p for W 1 = null  ( T + 2 I ) W_1=\text{null }(T+2I) W1=null (T+2I) is

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值