Singularity (mathematics)

In mathematics, a singularity is a point at which a given mathematical object is not defined, or a point where the mathematical object ceases to be well-behaved in some particular way, such as by lacking differentiability or analyticity.[1][2][3]

For example, the real function

{\displaystyle f(x)={\frac {1}{x}}}{\displaystyle f(x)={\frac {1}{x}}}
has a singularity at {\displaystyle x=0}x=0, where the numerical value of the function approaches {\displaystyle \pm \infty }\pm \infty so the function is not defined. The absolute value function {\displaystyle g(x)=|x|}{\displaystyle g(x)=|x|} also has a singularity at {\displaystyle x=0}x=0, since it is not differentiable there.[4]

The algebraic curve defined by {\displaystyle \left{(x,y):y{3}-x{2}=0\right}}{\displaystyle \left{(x,y):y{3}-x{2}=0\right}} in the {\displaystyle (x,y)}(x,y) coordinate system has a singularity (called a cusp) at {\displaystyle (0,0)}(0,0). For singularities in algebraic geometry, see singular point of an algebraic variety. For singularities in differential geometry, see singularity theory.

1 Real analysis

In real analysis, singularities are either discontinuities, or discontinuities of the derivative (sometimes also discontinuities of higher order derivatives). There are four kinds of discontinuities: type I, which has two subtypes, and type II, which can also be divided into two subtypes (though usually is not).

To describe the way these two types of limits are being used, suppose that {\displaystyle f(x)}f(x) is a function of a real argument {\displaystyle x}x, and for any value of its argument, say {\displaystyle c}c, then the left-handed limit, {\displaystyle f(c{-})}f(c{-}), and the right-handed limit, {\displaystyle f(c{+})}f(c{+}), are defined by:

{\displaystyle f(c^{-})=\lim _{x\to c}f(x)}f(c^{-})=\lim _{{x\to c}}f(x), constrained by {\displaystyle x<c}x<c and
{\displaystyle f(c^{+})=\lim _{x\to c}f(x)}f(c^{+})=\lim _{{x\to c}}f(x), constrained by {\displaystyle x>c}x>c.
The value {\displaystyle f(c{-})}f(c{-}) is the value that the function {\displaystyle f(x)}f(x) tends towards as the value {\displaystyle x}x approaches {\displaystyle c}c from below, and the value {\displaystyle f(c{+})}f(c{+}) is the value that the function {\displaystyle f(x)}f(x) tends towards as the value {\displaystyle x}x approaches {\displaystyle c}c from above, regardless of the actual value the function has at the point where {\displaystyle x=c}x=c .

There are some functions for which these limits do not exist at all. For example, the function

{\displaystyle g(x)=\sin \left({\frac {1}{x}}\right)}g(x)=\sin \left({\frac {1}{x}}\right)
does not tend towards anything as {\displaystyle x}x approaches {\displaystyle c=0}c=0. The limits in this case are not infinite, but rather undefined: there is no value that {\displaystyle g(x)}g(x) settles in on. Borrowing from complex analysis, this is sometimes called an essential singularity.

The possible cases at a given value {\displaystyle c}c for the argument are as follows.

A point of continuity is a value of {\displaystyle c}c for which {\displaystyle f(c{-})=f©=f(c{+})}f(c{-})=f©=f(c{+}), as one expects for a smooth function. All the values must be finite. If {\displaystyle c}c is not a point of continuity, then a discontinuity occurs at {\displaystyle c}c.
A type I discontinuity occurs when both {\displaystyle f(c{-})}f(c{-}) and {\displaystyle f(c{+})}f(c{+}) exist and are finite, but at least one of the following three conditions also applies:
{\displaystyle f(c^{-})\neq f(c{+})}f(c{-})\neq f(c^{+});
{\displaystyle f(x)}f(x) is not defined for the case of {\displaystyle x=c}x=c; or
{\displaystyle f©}f© has a defined value, which, however, does not match the value of the two limits.
Type I discontinuities can be further distinguished as being one of the following subtypes:
A jump discontinuity occurs when {\displaystyle f(c^{-})\neq f(c{+})}f(c{-})\neq f(c^{+}), regardless of whether {\displaystyle f©}f© is defined, and regardless of its value if it is defined.
A removable discontinuity occurs when {\displaystyle f(c{-})=f(c{+})}f(c{-})=f(c{+}), also regardless of whether {\displaystyle f©}f© is defined, and regardless of its value if it is defined (but which does not match that of the two limits).
A type II discontinuity occurs when either {\displaystyle f(c{-})}f(c{-}) or {\displaystyle f(c{+})}f(c{+}) does not exist (possibly both). This has two subtypes, which are usually not considered separately:
An infinite discontinuity is the special case when either the left hand or right hand limit does not exist, specifically because it is infinite, and the other limit is either also infinite, or is some well defined finite number. In other words, the function has an infinite discontinuity when its graph has a vertical asymptote.
An essential singularity is a term borrowed from complex analysis (see below). This is the case when either one or the other limits {\displaystyle f(c{-})}f(c{-}) or {\displaystyle f(c{+})}f(c{+}) does not exist, but not because it is an infinite discontinuity. Essential singularities approach no limit, not even if valid answers are extended to include {\displaystyle \pm \infty }\pm \infty .
In real analysis, a singularity or discontinuity is a property of a function alone. Any singularities that may exist in the derivative of a function are considered as belonging to the derivative, not to the original function.

1.1 Coordinate singularities

Main article: Coordinate singularity
A coordinate singularity occurs when an apparent singularity or discontinuity occurs in one coordinate frame, which can be removed by choosing a different frame. An example of this is the apparent singularity at the 90 degree latitude in spherical coordinates. An object moving due north (for example, along the line 0 degrees longitude) on the surface of a sphere will suddenly experience an instantaneous change in longitude at the pole (in the case of the example, jumping from longitude 0 to longitude 180 degrees). This discontinuity, however, is only apparent; it is an artifact of the coordinate system chosen, which is singular at the poles. A different coordinate system would eliminate the apparent discontinuity (e.g., by replacing the latitude/longitude representation with an n-vector representation).

2 Complex analysis

2.1 Isolated singularities

2.2 Nonisolated singularities

2.3 Branch points

3 Finite-time singularity

4 Algebraic geometry and commutative algebra

5 See also

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值