In mathematics, an involution, involutory function, or self-inverse function[1] is a function f that is its own inverse,
f(f(x)) = x
for all x in the domain of f.[2] Equivalently, applying f twice produces the original value.
An involution is a function {\displaystyle f:X\to X}f:X\to X that, when applied twice, brings one back to the starting point.
Contents
1 General properties
2 Involutions on finite sets
3 Involution throughout the fields of mathematics
3.1 Pre-calculus
3.2 Euclidean geometry
3.3 Projective geometry
3.4 Linear algebra
3.5 Quaternion algebra, groups, semigroups
3.6 Ring theory
3.7 Group theory
3.8 Mathematical logic
3.9 Computer science
4 See also