数学 {数学符号,表达式,等式,方程,变量,多项式,方程的等效变换}
, @LOC_COUNTER=6
数学符号
定义
用于表达数学的最小单位, 你在数学里看到的一切, 都是由数学符号组成的;
数学符号的分类:
1 常数;
.
如
123
,
π
,
e
,
i
=
−
1
123, \pi, e, i=\sqrt{-1}
123,π,e,i=−1, 也可用
a
,
b
,
c
a,b,c
a,b,c来代指;
2 变量;
.
用
x
,
y
,
z
x,y,z
x,y,z来表示, 代指某些数学对象(给定集合中的任意元素);
3 函数;
.
{自定义函数(用
f
,
g
,
h
f,g,h
f,g,h来表示(如
f
(
x
)
=
x
2
f(x) = x^2
f(x)=x2)), 系统函数(如
s
i
n
(
x
)
,
l
o
g
a
(
x
)
sin(x), log_a(x)
sin(x),loga(x))};
4 集合;
.
系统集合: {N(自然数), Z(整数), Q(有理数), R(实数), C(复数)};
.
集合操作: {
∈
,
⊂
\in, \subset
∈,⊂};
5 逻辑;
.
{
∀
,
∃
,
⟺
\forall, \exists, \iff
∀,∃,⟺};
6 运算;
.
{加减乘除, 根号, 取幂, 极限, 微积分, …};
7 标点;
.
{括号(表示强优先级)};
8 关系;
.
{等号不等号, 大于小于};
数学表达式
定义
不包含关系符号(如 = , ≠ , > , < =,\neq,>,< =,=,>,<)的数学符号的组合;
比如 1 + 2 , 3 x , f ( x ) + 5 1 + 2, \ 3x, \ f(x) + 5 1+2, 3x, f(x)+5;
相关术语
{算式, 多项式, 代数式, 解析式} @Mark_2
{算式, 多项式, 代数式, 解析式} 都属于数学表达式的子集;
.
他们依次属于包含关系: 算式
⊂
\subset
⊂ 多项式
⊂
\subset
⊂ 代数式
⊂
\subset
⊂ 解析式
⊂
\subset
⊂ 数学表达式; 换句话说, 算式属于特殊的{多项式/代数式}, 多项式属于特殊的代数式;
算式 | 多项式(又称整式) | 代数式 | 解析式 | 数学表达式 |
---|---|---|---|---|
{常数, 变量, 四则运算, 阶乘(其实阶乘的本质, 还是属于常数, 因为他就是一系列常数的乘法)} | {整数幂(连乘)} | {N次方根} | {实数幂, 对数, {三角, 反三角}函数, {双曲, 反双曲}函数, 级数} | {极限, 微分,积分}等一切数学符号 |
@DELIMITER
等式
定义
形如: 表达式 1 = 表达式 2 表达式1 = 表达式2 表达式1=表达式2;
性质
分类
恒等式: 在任何条件下都成立的等式; 比如2 = 2
;
矛盾式: 也称之为不等式; 比如2 = 3
是错误的 即矛盾式 等价于2 != 3
;
.
换句话说, 一个等式 可能为真 可能为假;
方程式: 包含未知数的等式;
相关知识
恒等式: 参见@Mark_0
;
–
方程式: 参见@Mark_1
;
恒等式 @Mark_0
定义
在任何条件下都成立的等式.
示例
二项式定理
( a + b ) n = ∑ i = 0 n C n i a i b n − i n ∈ N + \displaystyle (a + b) ^ n = \sum_{i = 0}^n C_n^i a^i b^{n-i} \quad n \in N^+ (a+b)n=i=0∑nCniaibn−in∈N+.
对于 a − b a-b a−b的情况, 可以变成 ( a + ( − b ) ) n (a + (-b))^n (a+(−b))n的形式.
当 n = 2 n=2 n=2时, 此等式又称为和平方; 当 n = 3 n=3 n=3时 称为和立方;
–
平方差
a 2 − b 2 = ( a − b ) ( a + b ) a^2 - b^2 = (a-b)(a+b) a2−b2=(a−b)(a+b).
–
立方和
a 3 ± b 3 = ( a ± b ) ( a 2 ∓ a b + b 2 ) a^3 \pm b^3 = (a \pm b) (a^2 \mp ab + b^2) a3±b3=(a±b)(a2∓ab+b2).
{变量,未知数}
定义
通常使用 x , y , z x,y,z x,y,z来标识, 本质上 {变量,未知数}都是表示不确定的量, 但在不同情况下 稍有不同;
1 在方程里,
x
x
x称为未知数.
.
如对于
x
2
=
4
x^2 = 4
x2=4中,
x
x
x并不能说是变量, 因为他只可以取
±
2
\pm 2
±2.
2 在表达式中,
x
x
x称为变量.
.
如在
f
(
x
)
=
2
x
,
x
∈
N
f(x)=2x, \ \ x \in N
f(x)=2x, x∈N这个表达式中,
x
x
x可以取给定集合里的任意元素, 他不受限制 可以任意变化;
算式
定义
根据@Mark_2
, 算式属于数学表达式的一种, 他是由: {常数, 变量, 四则运算}组成;
比如 2 x + 3 2x + 3 2x+3就是一个算式;
多项式(又称整式)
定义
根据@Mark_2
, 多项式属于数学表达式的一种, 他比算式多了一个整数幂操作, 即他是由: {常数, 变量, 四则运算, N次幂}组成;
比如 2 x 2 + 3 2x^2 + 3 2x2+3就是一个多项式;
任意多项式由若干个单项式的相加组合, 即
多项式
=
∑
单项式
\text{多项式} = \sum \text{单项式}
多项式=∑单项式;
.
单项式: 假如一个多项式由
x
,
y
,
z
x,y,z
x,y,z三个变量组成, 则多项式的每一项(即单项式) 都是形如:
A
x
n
1
y
n
2
z
n
3
A x^{n1} y^{n2} z^{n3}
Axn1yn2zn3的形式(其中A为常数,
n
1
,
n
2
,
n
3
∈
N
n1,n2,n3 \in N
n1,n2,n3∈N);
代数式
定义
根据@Mark_2
, 代数式属于数学表达式的一种, 他比多项式多了{有理数幂}操作, 即他是由: {常数, 变量, 四则运算, 有理数幂}组成;
.
有理数幂包含了两个操作: {
x
−
1
x^{-1}
x−1(即此时变量成为了分母(这是多项式所不允许的),
x
1
/
3
x^{1/3}
x1/3(即变量可以开方根(这也是多项式不允许的)};
相关术语
{有理式, 无理式, 整式, 分式}
有理式: 不包含变量的开方根操作, 即 x n , n ∈ Z x^n, n \in Z xn,n∈Z (如 x 2 , x − 2 x^2, x^{-2} x2,x−2都是有理式);
无理式: 包含变量的开方根, 即 x a x^a xa 其中 a a a一定是有分母的(如 x \sqrt{x} x);
有理式分为: {整式(即多项式), 分式};
.
因为有理式是
x
n
,
n
∈
Z
x^n, n \in Z
xn,n∈Z; 当
n
≥
0
n \geq 0
n≥0时 为整式, 当
n
<
0
n < 0
n<0时 为分式; (
x
2
x^2
x2是多项式, 而
1
x
3
\displaystyle \frac{1}{x^3}
x31为分式)
@DELIMITER
方程 @Mark_1
定义
方程有一些概念:
未知数集合X
.
自己要主动明确说明未知数有哪些; (X
是个集合);
.
.
比如规定方程的未知数集合为X = {x,y,z}
, 则该方程一定可以写成
f
(
x
,
y
,
z
)
=
g
(
x
,
y
,
z
)
f(x,y,z) = g(x,y,z)
f(x,y,z)=g(x,y,z)的形式 (两个多元函数);
.
未知数不一定出现在方程里; (比如规定方程的未知数是X = {x}
, 方程为
0
=
0
0=0
0=0, 这是可以的); 但方程里的未知数 必须出现在X
你 (比如方程2x = 3y
, 那么X
至少包含x,y
两个未知数);
.
2个未知数的类型 不一定相同; 比如X = {x,y}
, x
是实数 而y
是矩阵, 这是可以的;
定义域D
.
自己要主动明确说明: 每个未知数的定义域是什么; (D
是个集合);
.
比如方程
x
=
y
x=y
x=y, 规定定义域为
x
≤
0
,
y
≥
0
x \leq 0, y \geq 0
x≤0,y≥0, 则方程的解为{x=0, y=0}
;
.
定义域里面 包含了未知数集合, 因为定义域的形式是:
x
∈
D
x
,
y
∈
D
y
,
.
.
.
x \in D_x, y \in D_y, ...
x∈Dx,y∈Dy,..., 他一定要包含每个X
里面的未知数; (因此, 两个定义域相同 一定说明他们的未知数集合X
也是相同的);
解集
.
在定义域内 满足该等式的未知量取值; 可能为空, 可能为有限个, 也可能为无限个;
值类型
.
方程
f
(
.
.
)
=
g
(
.
.
)
f(..) = g(..)
f(..)=g(..)中,
f
(
.
.
)
f(..)
f(..)返回值的类型 (等于
g
(
.
.
)
g(..)
g(..)的返回值类型);
.
.
如果
f
,
g
f,g
f,g的返回值类型都不同, 那么
f
(
.
.
)
=
g
(
.
.
)
f(..) = g(..)
f(..)=g(..)就不能称之为方程; 因为中间是
=
=
=等号 即他俩要比较大小关系, 当然只有属于同一数学类型的两个对象 才可以比较大小;
.
比如方程为
2
x
=
5
2x = 5
2x=5, 因为5是实数 所以该方程的值类型为实数 (不用管左侧的
2
x
2x
2x,
x
x
x的定义域 也一定是实数集);
.
比如方程为
A
x
=
.
.
.
Ax = ...
Ax=... (E为矩阵, x定义域为实数), 那么该方程的值类型为矩阵;
值域
.
因为方程是形如
f
(
x
,
y
,
.
.
.
)
=
g
(
x
,
y
,
.
.
.
)
f(x,y,...) = g(x,y,...)
f(x,y,...)=g(x,y,...)的形式, 当未知量
x
,
y
,
.
.
.
∈
D
x,y,... \in D
x,y,...∈D定义域时, 得到对应的
f
,
g
f,g
f,g函数的值域 记作
R
f
,
R
g
R_f, R_g
Rf,Rg, 则
R
f
∪
R
g
R_f \cup R_g
Rf∪Rg称为该方程的值域;
项
.
比如方程
x
y
+
2
x
=
3
y
−
4
xy + 2x = 3y - 4
xy+2x=3y−4, 其中有4项: xy, 2x, 3y, -4
;
.
方程两侧, 就是若干项的相加减;
相关术语
元
方程中未知数的个数, 称为元;
.
比如: 一元方程 即形如:
f
(
x
)
=
g
(
x
)
f(x) = g(x)
f(x)=g(x);
@DELIMITER;
{等式函数, 布尔等式函数}; MARK: @LOC_5
;
对于方程
f
(
X
)
=
g
(
X
)
f(X) = g(X)
f(X)=g(X) (未知数为X
, 定义域为D
);
等式函数: 对于任意
X
0
∈
D
X_0 \in D
X0∈D 将
X
0
X_0
X0代入方程里 得到
f
(
X
0
)
=
g
(
X
0
)
f(X_0) = g(X_0)
f(X0)=g(X0), 这个等式记作
E
(
X
0
)
E(X_0)
E(X0), 因此
X
0
X_0
X0就对应这个等式;
.
这个等式是恒等式
⟺
\iff
⟺
X
0
X_0
X0是个解, 否则就是矛盾式;
那么, 对应所有的定义域
D
D
D, 就得到了一个等式函数
E
(
X
)
E(X)
E(X); (定义域为
D
D
D (和原方程定义域相同), 函数值为一个等式);
布尔等式函数
B
(
X
)
B(X)
B(X): 根据等式函数
E
(
X
)
E(X)
E(X), 如果为恒等式 返回true, 否则为矛盾式 返回false;
.
该函数的定义域仍然为
D
D
D, 值域为布尔值;
两个布尔等式函数 f , g f,g f,g相同 ⟺ \iff ⟺ ( D f = D g ) ∧ ( f ( x ) = g ( x ) , ∀ x ∈ D f ) (D_f = D_g) \land (f(x) = g(x), \forall x \in D_f) (Df=Dg)∧(f(x)=g(x),∀x∈Df) (也就是函数相同的定义);
@DELIMITER;
方程相同; MARK: @LOC_4
;
两个方程相同 的定义为: {定义域, 解集}是相同的; (定义域相同
⟹
\implies
⟹ 未知数集合X
是相同的)
.
值域可以不同; 比如方程x = x
(未知数为x
, 定义域为
R
\mathbb R
R) 值域为
R
\mathbb R
R, 该方程可以等效变换为0 = 0
(未知数为x
, 定义域为
R
\mathbb R
R) 该方程的值域为
0
0
0; 虽然值域不同, 但这两个方程是相同的;
.
值类型可以不同; 比如方程0 = 0
(未知数为x
, 定义域为
R
\mathbb R
R) 值类型为实数, 方程A = A
(未知数为x
, 定义域为
R
\mathbb R
R) (A
表示某个矩阵) 值类型为矩阵; 虽然值类型不同, 但这2个方程是相同的;
方程相同的 计算式: 两方程相同
⟺
\iff
⟺ 他俩的布尔等式函数相同; LINK: @LOC_5
;
@DELIMITER;
隐式方程;
令未知量集合为{x1, x2, ..., xn}
, 则
f
(
x
1
,
x
2
,
.
.
.
,
x
n
)
=
0
f(x_1, x_2, ..., x_n) = 0
f(x1,x2,...,xn)=0 称为隐式方程; (其中
f
f
f为多元函数), (也就是将未知数 全部放到左侧);
.
比如
x
+
y
+
3
=
0
x + y + 3 = 0
x+y+3=0为隐式方程;
–
显式方程;
令未知量集合为{x1, x2, ..., xn}
, 则
x
1
=
f
(
x
2
,
.
.
.
,
x
n
)
x_1 = f(x_2, ..., x_n)
x1=f(x2,...,xn) 称为显式方程; (其中
f
f
f为多元函数), (也就是: 某一个未知数在左侧, 其他未知数都在右侧);
.
比如
y
=
x
+
3
y = x + 3
y=x+3为显式方程;
其实显式方程 已经就是个函数了;
@DELIMITER
线性方程(又称一次方程) @Mark_3
A x + b = 0 Ax + b = 0 Ax+b=0为一元一次方程 ( f ( x ) = A x + b f(x) = Ax + b f(x)=Ax+b的图像, 在二维坐标系中 为一条直线);
A x + B y + c = 0 Ax + By+ c = 0 Ax+By+c=0为二元一次方程 ( f ( x ) = A x + B y + b f(x) = Ax +By+ b f(x)=Ax+By+b的图像, 在三维坐标系中 为一个平面);
n元一次方程, 为n维空间的超平面(即n维度空间中的, 维度为 n − 1 n-1 n−1的子空间);
@DELIMITER
方程组
由多个方程组成 (即解不再是只满足一个方程, 而是要满足多个方程);
@DELIMITER
{代数方程, 有理方程, 无理方程}
任意方程 A = B A = B A=B, 都可以化简为 A − B = 0 A - B = 0 A−B=0的形式, 因此任意方程 都可以形如 ? = 0 ? = 0 ?=0的形式, 根据 ? ? ?的分类, 若 ? ? ?是代数式, 则为代数方程; 若他是多项式 则为多项式方程; 以此类推;
@DELIMITER
{解析解, 数值解}
解析解
.
可以通过解析该方程来表达的解, 他是 有限次常见运算的组合;
.
最经典的, 一元二次方程的解 就是解析解;
数值解
.
使用数值分析方法, 可得到近似解; (比如
2
\sqrt{2}
2 无法求出其精确解, 就估算/近似为
1.414
1.414
1.414)
–
较复杂的方程可能会不存在解析解, 此时可以通过数值分析进行近似 可得到其数值解.
@DELIMITER
性质
显式方程 一定可以转换为隐式方程, 但反之不然;
.
显式方程y = f(x1,x2,...)
通过(等效变换–未知量变换) 得到g(x1,x2,...,y) = y - f(x1,x2,...) = 0
就是个隐式方程;
.
但隐式方程 比如
f
(
x
,
y
)
=
x
2
+
y
2
=
1
f(x,y) = x^2 + y^2 = 1
f(x,y)=x2+y2=1 就无法变成显式方程; 而隐式方程
x
+
y
2
=
1
x + y^2 = 1
x+y2=1 可以变成显式方程
x
=
1
−
y
2
x = 1 - y^2
x=1−y2;
@DELIMITER
方程
a
,
b
a,b
a,b: 定义域为
D
a
,
D
b
D_a, D_b
Da,Db, 解集为
R
a
,
R
b
R_a, R_b
Ra,Rb, 对应的布尔等式函数为
B
a
,
B
b
B_a, B_b
Ba,Bb (定义域分别为
D
a
,
D
b
D_a, D_b
Da,Db);
方程
a
,
b
a,b
a,b相同 的定义为:
(
D
a
=
D
b
)
∧
(
R
a
=
R
b
)
(D_a = D_b) \land (R_a = R_b)
(Da=Db)∧(Ra=Rb);
还有一个等价定义:
(
B
a
=
B
b
)
(B_a = B_b)
(Ba=Bb);
@DELIMITER;
对于方程
f
(
.
.
)
=
g
(
.
.
)
f(..) = g(..)
f(..)=g(..) 定义域为
D
D
D;
.
当未知量取定义域里的某个值
x
0
x_0
x0时, 此时将该值代入方程里替换掉未知量, 会得到
f
0
=
g
0
f_0 = g_0
f0=g0;
.
如果
f
0
=
g
0
f_0 = g_0
f0=g0 是矛盾式 则说明
x
0
x_0
x0不是解; 否则,
x
0
x_0
x0是一个解;
.
比如,
2
x
=
3
y
2x = 3y
2x=3y (定义域为
x
,
y
∈
R
x,y \in \mathbb R
x,y∈R); 当未知量取x=1, y=2
时 得到2 = 6
显然他是矛盾式 (即x=1, y=2
不是解); 而当未知量取x=3, y=2
时 得到6=6
显然他是恒等式 因此x=3, y=2
是一个解;
.
因此, 对定义域里的每一个取值 都会得到一个形如
f
i
=
g
i
f_i = g_i
fi=gi的等式 (如果他是恒等式 则得到一个解; 否则是矛盾式 则不是解);
@DELIMITER
不定方程(又称丢番图方程)
定义
不定方程: 所有常数均为整数, 且解也均为整数的, 且任意单项式最多包含1个变量,的 多项式方程;
.
不定方程一定形如:
a
1
∗
x
1
b
1
+
.
.
.
+
a
n
∗
x
n
b
n
=
A
a_1 * x_1 ^{b_1} + ... + a_n * x_n ^{b_n} = A
a1∗x1b1+...+an∗xnbn=A; 要注意几点:
.
1
a
i
,
A
a_i, A
ai,A这些常数 都必须是整数 (这和多项式的定义不同);
.
2
每一项 最多包含一个变量, 比如
2
x
y
2xy
2xy这个单项式 是不允许的(这和多项式定义不同);
.
3
每个
x
i
x_i
xi的范围 一定是整数(这和多项式定义不同); 所以谈到有解, 一定是指有整数解;
.
b
i
∈
N
+
b_i \in N^+
bi∈N+这是自然的, 从多项式的定义可知;
.
令
B
=
m
a
x
(
b
i
)
B = max(b_i)
B=max(bi), 则该不定方程称为:
n
n
n元
B
B
B次不定方程;
相关术语
一次不定方程
形如: a 1 ∗ x 1 + . . . + a n ∗ x n = A a_1*x_1 + ... + a_n*x_n = A a1∗x1+...+an∗xn=A;
其有解的充要条件是: g c d ( a 1 , . . . , a n ) ∣ A gcd(a_1, ..., a_n) \ | \ A gcd(a1,...,an) ∣ A;
–
当
n
=
2
n = 2
n=2 即2个变量的情况时, 该方程为: 裴蜀方程, 参见126819431/ @Mark_0
;
@DELIMITER
方程的等效变换
定义
方程1, 经过等效变换 后, 得到方程2, 且方程1和方程2 是相同的; (方程相同: LINK: @LOC_4
);
等效变换分为2类: {未知量变换, 复合变换};
@DELIMITER
未知量变换:
设方程1为
f
(
X
)
=
g
(
X
)
f(X) = g(X)
f(X)=g(X), 定义域
D
D
D; 方程两侧同时加减乘除一个h(X)
(关于未知数集合的函数, 定义域为D
(这很重要, 定义域 与方程的定义域 是相同的) 值域为实数);
.
比如方程3x = x
(定义域为
R
\mathbb R
R); 如果两侧同减去h(X)=x
变成了2x = 0
他和原方程是等价的; 可如果两侧同除以h(X)=x
变成了3 = 1
这就不是等价的 (原方程的解的x=0
而新方程是无解的);
假设方程的值类型为实数, 从等式函数的角度, 分析下 未知量变换需要满足哪些条件;
.
原方程的等式函数
E
(
X
)
E(X)
E(X), 对于
X
0
X_0
X0 他的等式为
f
(
X
0
)
=
g
(
X
0
)
f(X_0) = g(X_0)
f(X0)=g(X0) (可能是恒等式 可能是矛盾式), 进行未知数变换后 不可以影响该等式的布尔值 (原来是恒等式 现在必须还得是恒等式);
{加/减}操作;
对于
X
0
X_0
X0 他的新等式为
f
(
X
0
)
±
h
(
X
0
)
=
g
(
X
0
)
±
h
(
X
0
)
f(X_0) \pm h(X_0) = g(X_0) \pm h(X_0)
f(X0)±h(X0)=g(X0)±h(X0), 因为
h
(
X
0
)
h(X_0)
h(X0)是个标量, 从1维坐标系的角度看 两个实数
f
(
X
0
)
,
g
(
X
0
)
f(X_0), g(X_0)
f(X0),g(X0) 同加减一个标量 他俩的相对大小关系 不会变化;
因此, 加减操作 是等效的;
乘法操作;
因为
h
(
X
i
)
h(X_i)
h(Xi)是个标量, 从1维坐标系的角度看 两个实数
f
(
X
i
)
,
g
(
X
i
)
f(X_i), g(X_i)
f(Xi),g(Xi) 同乘一个标量 他俩的相对大小关系 可能会变化的; (比如1 < 2
可是同乘0
后 变成了0 = 0
);
准确的说, 只有当
(
f
(
X
i
)
≠
g
(
X
i
)
)
∧
(
h
(
X
i
)
=
0
)
(f(X_i) \neq g(X_i)) \land (h(X_i) = 0)
(f(Xi)=g(Xi))∧(h(Xi)=0)时, 会出错; 也就是
f
(
X
)
∗
h
(
X
)
=
g
(
X
)
∗
h
(
X
)
f(X) * h(X) = g(X) * h(X)
f(X)∗h(X)=g(X)∗h(X) 并不是等效于 原方程, 你需要保证
h
(
X
i
)
≠
0
h(X_i) \neq 0
h(Xi)=0;
因此, 乘法是不能直接等效变换的 (除非定义域里 不存在使得
h
(
X
)
=
0
h(X)=0
h(X)=0的情况); 但如果从解方程的角度 如果你等效变换的目的是为了解方程 (即求解), 那么可以进行如下操作:
.
令
D
0
⊂
D
D_0 \subset D
D0⊂D为: 所有使得
h
(
X
)
=
0
h(X) = 0
h(X)=0的取值; (即
∀
X
∈
D
0
,
h
(
X
)
=
0
\forall X \in D_0, h(X) = 0
∀X∈D0,h(X)=0);
.
对于要求所有
D
0
D_0
D0里的解的情况, 一个个的代入原方程
f
(
X
)
=
g
(
X
)
f(X) = g(X)
f(X)=g(X)里, 看看有哪些解;
.
对于要求所有
D
/
D
0
D/D_0
D/D0里的解的情况, 求解新方程
f
(
X
)
∗
h
(
X
)
=
g
(
X
)
∗
h
(
X
)
f(X) * h(X) = g(X) * h(X)
f(X)∗h(X)=g(X)∗h(X) (且定义域为
D
/
D
0
D/D_0
D/D0, 这样保证了在定义域里
h
(
X
)
≠
0
h(X) \neq 0
h(X)=0);
.
比如方程
x
=
1
x = 1
x=1 (定义域为
R
\mathbb R
R), 令
h
(
X
)
=
x
h(X) = x
h(X)=x, 则
D
0
=
{
0
}
D_0 = \{0\}
D0={0}; (对于
D
0
D_0
D0里, 没有解); (对于
D
/
D
0
D/D_0
D/D0里, 新方程为
x
2
=
x
x^2 = x
x2=x 解为
1
1
1);
除法操作;
跟乘法的情况一样, 当
h
(
X
)
=
0
h(X) = 0
h(X)=0时 发生了除0错误;
因此, 除法是不能直接等效变换的 (除非定义域里 不存在使得
h
(
X
)
=
0
h(X)=0
h(X)=0的情况); 但如果从解方程的角度 如果你等效变换的目的是为了解方程 (即求解), 那么可以进行如下操作:
.
令
D
0
⊂
D
D_0 \subset D
D0⊂D为: 所有使得
h
(
X
)
=
0
h(X) = 0
h(X)=0的取值; (即
∀
X
∈
D
0
,
h
(
X
)
=
0
\forall X \in D_0, h(X) = 0
∀X∈D0,h(X)=0);
.
对于要求所有
D
0
D_0
D0里的解的情况, 一个个的代入原方程
f
(
X
)
=
g
(
X
)
f(X) = g(X)
f(X)=g(X)里, 看看有哪些解;
.
对于要求所有
D
/
D
0
D/D_0
D/D0里的解的情况, 求解新方程
f
(
X
)
/
h
(
X
)
=
g
(
X
)
/
h
(
X
)
f(X) / h(X) = g(X) / h(X)
f(X)/h(X)=g(X)/h(X) (且定义域为
D
/
D
0
D/D_0
D/D0, 这样保证了在定义域里
h
(
X
)
≠
0
h(X) \neq 0
h(X)=0);
.
比如方程
x
2
=
x
x^2 = x
x2=x (定义域为
R
\mathbb R
R), 令
h
(
X
)
=
x
h(X) = x
h(X)=x, 则
D
0
=
{
0
}
D_0 = \{0\}
D0={0}; (对于
D
0
D_0
D0里,
0
0
0是个解); (对于
D
/
D
0
D/D_0
D/D0里, 新方程为
x
=
1
x = 1
x=1 解为
1
1
1), 因此0, 1
是解;
@DELIMITER
复合函数变换:
设方程1为
f
(
X
)
=
g
(
X
)
f(X) = g(X)
f(X)=g(X), 定义域
D
D
D 值域为
R
R
R;
函数
h
(
x
)
h(x)
h(x) 定义域为
D
h
D_h
Dh, 且在定义域上 为单射函数 (
h
(
)
h()
h()的自变量类型 与方程1的值类型是相同的);
如果
R
⊂
D
h
R \subset D_h
R⊂Dh, 则
h
(
x
)
h(x)
h(x)函数为等效变换 (即方程
h
(
f
(
X
)
)
=
h
(
g
(
X
)
)
h( f(X)) = h( g(X))
h(f(X))=h(g(X)) 与方程1相同);
证明:
从等式函数的角度, 对任意
X
0
∈
D
X_0 \in D
X0∈D 得到等式
f
(
X
0
)
=
g
(
X
0
)
f(X_0) = g(X_0)
f(X0)=g(X0) (他是{恒等式/矛盾式}), 经过复合函数后 变成了
h
(
f
(
X
0
)
)
=
h
(
g
(
X
0
)
)
h( f(X_0)) = h( g(X_0))
h(f(X0))=h(g(X0)), 那么要保证 这个新等式 与 原等式 的布尔值一样 (要么都是恒等式 要么都是矛盾式, 否则解集就不同了);
.
只有当h(x)
为单射时, 此时如果其定义域
D
h
D_h
Dh里的任意两个自变量取值 (如果相同 则函数值也相同, 即恒等式), (如果不同 则函数值一定不同, 即矛盾式);
.
这样就保证了, 任意
X
0
∈
D
X_0 \in D
X0∈D 他在原方程里的等式的布尔值 与在新方程里的等式的布尔值, 是一样的; 即解集是一样的;
性质
@DELIMITER
等效变换的复合函数变换 必须是单射函数;
.
比如方程x = 3
(令
D
=
R
D = \mathbb R
D=R,则值域
R
=
R
R = \mathbb R
R=R), 如果令
o
p
(
x
)
=
x
2
op(x) = x^2
op(x)=x2 且
D
o
=
R
D_o = \mathbb R
Do=R,虽然
R
⊂
D
o
R \subset D_o
R⊂Do, 但是由于
o
p
(
x
)
op(x)
op(x)不是单射函数, 所以方程
o
p
(
x
)
=
o
p
(
3
)
op(x) = op(3)
op(x)=op(3) 即
x
2
=
3
x^2 = 3
x2=3 与原方程 并不相同;
.
原方程的解为x=3
, 而新方程的解为x={3, -3}
;
.
但如果令
D
≥
0
D \geq 0
D≥0, 则值域
R
≥
0
R \geq 0
R≥0; 令
o
p
(
x
)
=
x
2
op(x) = x^2
op(x)=x2 且
D
o
≥
0
D_o \geq 0
Do≥0, 此时依然满足
R
⊂
D
o
R \subset D_o
R⊂Do, 而且
o
p
(
x
)
op(x)
op(x)在其定义域上 为单射函数, 故
o
p
(
x
)
=
o
p
(
3
)
op(x) = op(3)
op(x)=op(3) (即
x
2
=
3
x^2 = 3
x2=3) 与原方程是等价的;
@DELIMITER
@MARK_4
对于等式
A
=
B
A = B
A=B, 我们分析AB的类型;
.
首先, A|B一定是一个数学对象 (比如, 实数/矩阵/…), 且他俩是相同的类型 (A是实数 而B是矩阵, 这是不可能的); 他俩不仅类型相同, 还相等;
.
.
当然, 相等这个概念, 他的定义 是要有其数学类型所定义的; (实数有其
=
=
=的定义, 矩阵也有其
=
=
=的定义, 因人而异的)
.
假如A|B的数学类型为
T
T
T, 若T支持左乘标量, 那么
A
=
B
A=B
A=B 与
k
∗
A
=
k
∗
B
k*A = k*B
k∗A=k∗B 是完全等价的 (
k
k
k可以等于0)
.
.
但要注意,
k
∗
A
≠
B
∗
k
k*A \neq B * k
k∗A=B∗k, 因为不支持右乘; 即便支持右乘 也不要这样写, 要规范 做相同的处理;
.
.
为什么可以这样做呢? 他的本质是, 因为
A
,
B
A,B
A,B相等, 因此, 方程
A
=
B
A=B
A=B 可推出
A
=
A
A=A
A=A (或
B
=
B
B=B
B=B), 注意词语可推出, 而不是充要条件;
.
.
.
注意, 虽然
2
x
=
0
2x = 0
2x=0的解是
x
=
0
x=0
x=0, 而你变成
2
x
=
2
x
2x = 2x
2x=2x后 解就变了, 因为他是个恒等式; 但这里不考虑解的问题, 因为讨论的是 操作
∗
k
*k
∗k的合法性;
.
.
对于
A
=
A
A=A
A=A恒等式, 你要进行
∗
k
*k
∗k操作, 就相当于, 执行了
k
∗
A
k * A
k∗A; 因此, 已知A是一个合法对象, 你要保证
k
∗
A
k*A
k∗A操作之后 依然是一个合法对象;
.
.
k
k
k是任何标量都可以, 不可以是
∞
\infty
∞ (也就是平时说的
/
0
/0
/0除零问题), 因为他不是标量 (标量是明确的一个常数);
.
.
因此, 如果你要对方程
A
=
B
A=B
A=B 两侧同时执行某操作
o
p
op
op, 即变成
o
p
(
A
)
=
o
p
(
B
)
op(A) = op(B)
op(A)=op(B); 你只要保证:
o
p
(
A
)
op(A)
op(A)是合法的即可 (因为
o
p
(
B
)
op(B)
op(B)等价于
o
p
(
A
)
op(A)
op(A), AB两个对象是相等的);
.
.
比如, 如果A是矩阵, 那么
o
p
(
A
)
=
A
+
k
op(A) = A + k
op(A)=A+k 这是不可以的, 因为矩阵不可以与标量相加;
.
.
比如,
A
A
A是
m
∗
n
m*n
m∗n的矩阵, 那么
o
p
(
A
)
=
C
∗
A
op(A) = C * A
op(A)=C∗A 其中
C
C
C为
k
∗
m
k*m
k∗m的矩阵, 这是合法的, 结果是一个
k
∗
n
k*n
k∗n的矩阵;
.
.
.
但是, 如果你写成:
C
∗
A
=
B
∗
C
C * A = B * C
C∗A=B∗C 这就错了! 因为矩阵的乘法不具有交换律, 再说 从规范性角度也不对, 两侧必须做完全相同的处理
C
∗
A
=
C
∗
B
C*A = C*B
C∗A=C∗B;
例题
幂指函数
y
=
u
v
(
u
>
0
)
y = u^v (u > 0)
y=uv(u>0), 因为其函数值> 0
, 故对于对数函数
ln
x
\ln x
lnx (其定义域为x > 0
), 可以进行复合函数变换;
即
y
=
u
v
(
u
>
0
)
y = u^v (u>0)
y=uv(u>0)
⟺
\iff
⟺
ln
y
=
ln
u
v
(
u
>
0
)
\ln y = \ln {u^v} (u>0)
lny=lnuv(u>0);
@DELI;
x
2
+
y
2
=
1
x^2 + y^2 = 1
x2+y2=1 (定义域为
x
,
y
∈
R
x,y \in \mathbb R
x,y∈R)
通过未知数变换的减法操作 (令
h
(
X
)
=
x
2
h(X) = x^2
h(X)=x2), 得到
y
2
=
1
−
x
2
y^2 = 1 - x^2
y2=1−x2 (他与原方程相同);
此时新方程的值域为
≥
0
\geq 0
≥0, 通过复合函数操作 (令
h
(
x
)
=
x
h(x) = \sqrt{x}
h(x)=x 定义域为
≥
0
\geq 0
≥0), 因为
R
⊂
D
h
R \subset D_h
R⊂Dh 且
h
(
x
)
h(x)
h(x)为单射, 所以可以进行操作, 得到
y
2
=
1
−
x
2
\sqrt{ y^2} = \sqrt{ 1 - x^2}
y2=1−x2;
.
注意, 根号不可以直接与平方抵消 (即
y
2
≠
y
\sqrt{y^2} \neq y
y2=y; LINK: [https://editor.csdn.net/md/?articleId=130472444]--[@LOC_0]
), 他等于
∣
y
∣
|y|
∣y∣ 而不是y
;
.
即
∣
y
∣
=
1
−
x
2
|y| = \sqrt{ 1 - x^2}
∣y∣=1−x2; (也可将他拆分开来, 即当
y
≥
0
y \geq 0
y≥0时 方程为
y
=
1
−
x
2
y = \sqrt{1 - x^2}
y=1−x2; 否则
y
<
0
y < 0
y<0时 方程为
−
y
=
1
−
x
2
-y = \sqrt{1 - x^2}
−y=1−x2);
@DELIMITER
方程的拆分
定义
将定义域划分为若干子区域, 在子区域上 再单独研究方程;
.
比如
∣
y
∣
=
2
∣
x
∣
+
3
|y| = 2|x| + 3
∣y∣=2∣x∣+3 (定义域为
x
,
y
∈
R
x,y \in \mathbb R
x,y∈R);
.
拆分1: (当
y
≥
0
y \geq 0
y≥0时 得到
y
=
2
∣
x
∣
+
3
y = 2|x| + 3
y=2∣x∣+3), (否则
y
<
0
y < 0
y<0 得到
−
y
=
2
∣
x
∣
+
3
-y = 2|x| + 3
−y=2∣x∣+3);
.
拆分2: (当
x
≥
0
x \geq 0
x≥0时 得到
∣
y
∣
=
2
x
+
3
|y| = 2x + 3
∣y∣=2x+3), (否则
x
<
0
x < 0
x<0 得到
y
=
2
(
−
x
)
+
3
y = 2(-x) + 3
y=2(−x)+3);
.
拆分3: (当
x
≥
0
,
y
≥
0
x \geq 0, y \geq 0
x≥0,y≥0时 得到
y
=
2
x
+
3
y = 2x + 3
y=2x+3), (当
x
≥
0
,
y
<
0
x \geq 0, y < 0
x≥0,y<0 得到
−
y
=
2
x
+
3
-y = 2x + 3
−y=2x+3), (当
x
<
0
,
y
≥
0
x < 0, y \geq 0
x<0,y≥0时 得到
y
=
2
(
−
x
)
+
3
y = 2(-x) + 3
y=2(−x)+3), (否则
x
<
0
,
y
<
0
x < 0, y < 0
x<0,y<0 得到
−
y
=
2
(
−
x
)
+
3
-y = 2(-x) + 3
−y=2(−x)+3);