数学 {小数,有理数,无理数,实数}

本文详细介绍了数学中的小数类型,包括循环小数和不循环小数,并阐述了有理数与无理数的定义、性质以及它们之间的关系。通过转换为分数形式,解释了如何将有理数表示为循环小数,并探讨了无理数乘除运算的结果。此外,还讨论了实数集的概念,以及实数的分类和性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数学 {小数,有理数,无理数,实数}
@LOC: 1

小数

定义

#前言#
形如pre.suf, 根据suf的长度 可分为{有限, 无限小数}; 其实对于有限小数 我们可以在他后面加入无限个0变成无限小数, 因此 所有的小数 都可以是无限小数;

小数分为:
1: 循环小数; suf的末尾 有个循环节, 比如pre.1(23) = pre.1 23...23;
2: 不循环小数; suf没有循环节 也就是没有规律;

性质

X . a b c d e ‾ X.abc \overline{de} X.abcde 其实等价于一个极限式: 对于 X . a b c X.abc X.abc, 一次操作为向后端添加 d e de de, 当 操作次数 → + ∞ 操作次数 \to +\infty 操作次数+时 这个数 就记作 X . a b c d e ‾ X.abc \overline{de} X.abcde;

@DELI;

有关{循环, 不循环小数}, 参见LINK: @LOC_0;

有理数集 Q \mathbb Q Q

定义

#等价表述-1#: (分数形式) 有理数一定可以形如 a b \frac{a}{b} ba的形式 ( a , b ∈ Z a,b \in \mathbb Z a,bZ);
#等价表述-2#: (循环小数形式) 有理数一定是循环小数;

性质

#循环小数形式的有理数, 转换为 分数形式#

##引言##
0. ( a b c ) = a b c 999 0.(abc) = \frac{abc}{999} 0.(abc)=999abc;
证明:
@IF(abc != 999): 想象下你做除法的步骤, 如果是 a b c / 1000 abc / 1000 abc/1000 (进3位) 那么会是abc000 / 1000 = abc 余数为 0 0 0 因此答案为 0. a b c 0.abc 0.abc; 但是如果是 a b c / 999 abc / 999 abc/999 (进3位) 那么会是abc000 / 999 = abc 余数为abc (因为abc < 999, 因此这是正确的 因为余数必须要小于被除数); 即答案得到了abc, 那么下一次操作 依然是abc000 / 999 答案又得到abc, 故答案为0.abc abc abc ...;
. 总结: a b c / 999 = 0. ( a b c ) abc/999 = 0.(abc) abc/999=0.(abc)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值