数学 {小数,有理数,无理数,实数}
@LOC: 1
小数
定义
#前言#
形如pre.suf
, 根据suf
的长度 可分为{有限, 无限小数}; 其实对于有限小数 我们可以在他后面加入无限个0变成无限小数, 因此 所有的小数 都可以是无限小数;
小数分为:
1: 循环小数; suf
的末尾 有个循环节, 比如pre.1(23) = pre.1 23...23
;
2: 不循环小数; suf
没有循环节 也就是没有规律;
性质
X . a b c d e ‾ X.abc \overline{de} X.abcde 其实等价于一个极限式: 对于 X . a b c X.abc X.abc, 一次操作为向后端添加 d e de de, 当 操作次数 → + ∞ 操作次数 \to +\infty 操作次数→+∞时 这个数 就记作 X . a b c d e ‾ X.abc \overline{de} X.abcde;
@DELI;
有关{循环, 不循环小数}, 参见LINK: @LOC_0
;
有理数集 Q \mathbb Q Q
定义
#等价表述-1#: (分数形式) 有理数一定可以形如 a b \frac{a}{b} ba的形式 ( a , b ∈ Z a,b \in \mathbb Z a,b∈Z);
#等价表述-2#: (循环小数形式) 有理数一定是循环小数;
性质
#循环小数形式的有理数, 转换为 分数形式#
##引言##
0. ( a b c ) = a b c 999 0.(abc) = \frac{abc}{999} 0.(abc)=999abc;
证明:
@IF(abc != 999
): 想象下你做除法的步骤, 如果是 a b c / 1000 abc / 1000 abc/1000 (进3位) 那么会是abc000 / 1000 = abc
余数为 0 0 0 因此答案为 0. a b c 0.abc 0.abc; 但是如果是 a b c / 999 abc / 999 abc/999 (进3位) 那么会是abc000 / 999 = abc
余数为abc
(因为abc < 999
, 因此这是正确的 因为余数必须要小于被除数); 即答案得到了abc
, 那么下一次操作 依然是abc000 / 999
答案又得到abc
, 故答案为0.abc abc abc ...
;
.
总结: a b c / 999 = 0. ( a b c ) abc/999 = 0.(abc) abc/999=0.(abc)