目录
学习目标
- 配置yolo运行(深度学习)环境
- 了解yolo算法(v1,v2,v3,v4,v5,v6,v7)运行规则
- 使用yolo训练模型
学习内容
- 配置yolo环境
- 掌握yolo基本运行规律
- 掌握yolo模型的训练
- 其他
学习时间
- 2022年7月18日
学习产出
下面是整体学习的过程(环境搭建,模型训练总体过程),在环境配置中,我提供两种思路,分别为需要配置CUDA和不需要手动配置CUDA;在模型训练中,我着重对yolov5进行陈述,对v7主要做补充。
一、环境配置(需要配置CUDA)
1.安装anaconda与pycharm
官网链接 Anaconda | The World's Most Popular Data Science Platform PyCharm: the Python IDE for Professional Developers by JetBrains
进入官网直接下载即可,anaconda可以使用清华镜像,pycharm最好下载专业版,社区版不支持远端ssh链接,无法使用商用服务器进行训练。
anaconda下载好安装即可,有几点注意事项:



2.安装并进行测试
安装之后,win+R键输入cmd进入命令行,输入
conda --version
若出现conda版本号即安装成功。
3.更换镜像源与更新包
更换镜像(清华大学镜像),在cmd后输入:
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
更新包,在cmd输入:
conda update conda #更新anaconda
conda upgrade --all #更新所有第三方包
至此为止,anaconda安装完毕。

本文详述了合工大苍穹战队视觉组在第一天的培训内容,重点在于如何配置YOLO模型的运行环境,包括CUDA的配置和NVIDIA驱动的安装。同时,介绍了利用Labelmg制作深度学习目标检测数据集和训练目标检测模型的步骤,包括数据集的准备、权重选择、训练过程及使用Tensorboard查看参数。文章还提到了YOLOv7的优化和服务器使用体验。
最低0.47元/天 解锁文章
4979

被折叠的 条评论
为什么被折叠?



