Manacher算法详解:高效寻找最长回文子串

引言

        在处理字符串问题时,回文串的查找是一个常见的需求。Manacher算法是一种高效的线性时间复杂度算法,用于查找字符串中的最长回文子串。本文将详细介绍Manacher算法的工作原理,并提供一个基于Java语言的实现示例。


目录

引言

一、问题背景

二、Manacher算法原理

1. 预处理:统一奇偶长度

2. 核心概念

3. 算法步骤

三、Java代码实现

四、算法分析

五、总结


一、问题背景

回文串是正读反读相同的字符串,如“aba”或“abba”。寻找字符串中的最长回文子串时,常见方法有:

  • 暴力法:遍历所有子串,检查是否为回文,时间复杂度O(n³)。

  • 动态规划:记录子问题的结果,优化至O(n²)。

  • 中心扩展法:以每个字符为中心向两侧扩展,时间复杂度O(n²)。

但以上方法均非最优。1975年,Glenn Manacher提出Manacher算法,将时间复杂度降至O(n)


二、Manacher算法原理
1. 预处理:统一奇偶长度

将原字符串插入特殊字符(如#),使所有回文子串变为奇数长度。例如:
原字符串: "abba" → 预处理后: "#a#b#b#a#"
首尾添加不同字符(如$^)避免越界检查。

2. 核心概念
  • 回文半径数组 p[]p[i]表示以预处理后字符串中位置i为中心的最大回文半径(含自身)。

  • 当前最远右边界 R:所有已发现回文子串能达到的最右位置。

  • 中心点 C:对应最远右边界R的回文中心。

3. 算法步骤
  1. 预处理字符串

  2. 初始化C = 0R = 0p[]全为0。

  3. 遍历字符串,对每个位置i

    • 确定初始半径:若i < R,利用对称性取min(p[mirror], R - i)

    • 中心扩展:尝试扩展回文半径。

    • 更新CR:若i的右边界超过R,则更新C = iR = i + p[i]

  4. 找出p[]中的最大值,确定最长回文子串。


三、Java代码实现
public class ManacherAlgorithm {

    public static String longestPalindrome(String s) {
        if (s == null || s.isEmpty()) return "";

        // 预处理字符串
        StringBuilder processed = new StringBuilder("$#");
        for (char c : s.toCharArray()) {
            processed.append(c).append("#");
        }
        processed.append("^");
        String T = processed.toString();

        int n = T.length();
        int[] p = new int[n];
        int C = 0, R = 0;

        for (int i = 1; i < n - 1; i++) {
            int mirror = 2 * C - i; // 计算i关于C的对称点

            // 确定初始半径
            if (i < R) {
                p[i] = Math.min(R - i, p[mirror]);
            }

            // 中心扩展
            while (T.charAt(i + p[i] + 1) == T.charAt(i - p[i] - 1)) {
                p[i]++;
            }

            // 更新C和R
            if (i + p[i] > R) {
                C = i;
                R = i + p[i];
            }
        }

        // 找出最大回文半径及中心
        int maxLen = 0;
        int center = 0;
        for (int i = 0; i < n; i++) {
            if (p[i] > maxLen) {
                maxLen = p[i];
                center = i;
            }
        }

        // 计算原字符串中的起始位置
        int start = (center - maxLen) / 2;
        return s.substring(start, start + maxLen);
    }

    public static void main(String[] args) {
        System.out.println(longestPalindrome("babad")); // 输出 "bab" 或 "aba"
        System.out.println(longestPalindrome("cbbd"));  // 输出 "bb"
    }
}

四、算法分析
  • 时间复杂度:O(n),每个字符最多被访问两次。

  • 空间复杂度:O(n),用于存储预处理字符串和回文半径数组。


五、总结

        Manacher算法通过对称性利用预处理技巧,高效解决最长回文子串问题。其核心在于维护回文半径数组和动态更新最远右边界,避免重复计算。掌握这一算法,可显著提升字符串处理效率。该算法不仅限于查找最长回文子串,还可以应用于其他涉及回文串的问题中。希望这篇文章能帮助你理解和掌握Manacher算法的基本原理及其应用。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值