卷积神经网络(CNN)是深度学习中的重要组成部分,广泛应用于计算机视觉任务,如图像分类、目标检测等。
在CNN的发展过程中,许多经典的网络架构被提出并不断改进,其中包括VGG、ResNet、GoogleNet等。
1. VGG (Visual Geometry Group)
VGG是由牛津大学的视觉几何组(Visual Geometry Group)在2014年提出的一种深度卷积神经网络架构。最著名的版本是VGG-16和VGG-19,它们分别包含16和19个层次。
结构特点:
- 统一的卷积核大小:VGG使用3x3的小卷积核来堆叠层,所有卷积层的滤波器大小都统一,降低了网络设计的复杂性。
- 深度网络:VGG通过加深网络深度来提升网络的表达能力,通常使用多个连续的卷积层进行特征提取。
- 池化层:每经过几层卷积后,VGG使用2x2的最大池化(Max Pooling)来减小特征图的尺寸。
优点:
- 简单且易于实现:VGG的结构较为简单,便于理解和实现。
- 性能较好:在图像分类任务中,VGG取得了不错的效果&#