【科普】简述CNN的各种网络架构

卷积神经网络(CNN)是深度学习中的重要组成部分,广泛应用于计算机视觉任务,如图像分类、目标检测等。
在CNN的发展过程中,许多经典的网络架构被提出并不断改进,其中包括VGGResNetGoogleNet等。

1. VGG (Visual Geometry Group)

VGG是由牛津大学的视觉几何组(Visual Geometry Group)在2014年提出的一种深度卷积神经网络架构。最著名的版本是VGG-16VGG-19,它们分别包含16和19个层次。

结构特点:

  • 统一的卷积核大小:VGG使用3x3的小卷积核来堆叠层,所有卷积层的滤波器大小都统一,降低了网络设计的复杂性。
  • 深度网络:VGG通过加深网络深度来提升网络的表达能力,通常使用多个连续的卷积层进行特征提取。
  • 池化层:每经过几层卷积后,VGG使用2x2的最大池化(Max Pooling)来减小特征图的尺寸。

优点:

  • 简单且易于实现:VGG的结构较为简单,便于理解和实现。
  • 性能较好:在图像分类任务中,VGG取得了不错的效果&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哇咔咔哇咔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值