用通量证明高斯公式

目录

定义

推导前言

证明 

定义

高斯公式又叫高斯定理 (或散度定理): 矢量穿过任意闭合曲面的通量等于矢量的散度对闭合面所包围的体积的积分 它给出了闭曲面积分和相应体积分的积分变换关系,是矢量分析中的重要恒等式。

推导前言

1.也就是封闭曲面通量问题,一块光滑连续的封闭曲面∑,围成一个几何体Ω,存在矢量场V,坐标不同,流速度不同

 2.那么通过经典的积分思想:把∑分成无数小块,每块近似平面,且小块面上速度V近似不变,求出每一块通量再求和取极限,问题就能解决

 

3.同样因为V的方向和Δs方向不一样,且夹角位置,所以把V分解为分别沿x,y,z方向,将Δs投影到三面得到x,y,z面对应的面积

 那么总通量就得出为

一般做法将其换为二重积分进行计算,但是也有换不了的情况,那么高斯公式就能解决这一情况

证明 

首先化繁为简,假设是计算一个矩形的通量

 试着把两个矩形拼在一起

 就会发现两个矩形重合的面因为方向完全相反,所以通量抵消,于是就可以简化

按照规律不管叠加多少个,都只会剩下外层

 

 再加上积分的思想,就可以求出任何封闭曲面的通量了

那么接下来开始公式的推导

取一小块dv,标注各点x,y,z方向的流速,外侧

 其中以A为基准

A[P(x,y,z),Q(x,y,z),z(x,y,z)]

B[P(x+dx,y,z),Q(x+dx,y,z),z(x+dx,y,z)]

C[P(x+dx,y+dy,z),Q(x+dx,y+dy,z),z(x+dx,y+dy,z)]

D[P(x,y+dy,z),Q(x,y+dy,z),z(x,y+dy,z)]

E[P(x,y,z+dz),Q(x,y,z+dz),z(x,y,z+dz)]

F[P(x+dx,y,z+dz),Q(x+dx,y,z+dz),z(x+dx,y,z+dz)]

G[P(x+dx,y+dy,z+dz),Q(x+dx,y+dy,z+dz),z(x+dx,y+dy,z+dz)]

C[P(x,y+dy,z+dz),Q(x,y+dy,z+dz),z(x,y+dy,z+dz)]

那么就可以计算出各面通量

\PhiABCD = -R(x,y,z)dxdy 

\PhiEFGH = R(x,y,z+dz)dxdy 

 \PhiBCFG = P(x+dx,y,z)dydz 

 \PhiADEH = -P(x,y,z)dydz 

 \PhiABEF = -Q(x,y,z)dxdz 

  \PhiDCHG = Q(x,y+dy,z)dxdz 

 再将全部加起来就是总通量

\Phi = \PhiABCD + \PhiEFGH +  \PhiBCFG +   \PhiADEH +   \PhiABEF +  \PhiDCHG

   =  P(x+dx,y,z)dydz - P(x,y,z)dydz + Q(x,y+dy,z)dxdz - Q(x,y,z)dxdz + R(x,y,z+dz)dxdy -R(x,y,z)dxdy

   = [P(x+dx,y,z) - P(x,y,z)]dydz + [Q(x,y+dy,z) - Q(x,y,z)]dxdz + [R(x,y,z+dz) -R(x,y,z)]dxdy

   =\frac{P(x+dx,y,z) - P(x,y,z)}{​{\partial }x{\partial }y{\partial }z}dy^{2}dz^{2}dx + \frac{Q(x,y+dy,z) - Q(x,y,z)}{​{\partial }x{\partial }y{\partial }z}dx^{2}dz^{2}dy + \frac{R(x,y,z+dz) - R(x,y,z)}{​{\partial }x{\partial }y{\partial }z}dx^{2}dy^{2}dz

   =\frac{P(x+dx,y,z) - P(x,y,z)}{​{\partial }x}dxdydz + \frac{Q(x,y+dy,z) - P(x,y,z)}{​{\partial }y}dxdydz + \frac{R(x,y,z+dz) - P(x,y,z)}{​{\partial }z}dxdydz

   =\left ( \frac{\partial P(x,y,z))}{\partial x}+\frac{\partial Q(x,y,z))}{\partial y} + \frac{\partial R(x,y,z))}{\partial z} \right )dxdydz

所以一个小块的通量就是\left ( \frac{\partial P(x,y,z))}{\partial x}+\frac{\partial Q(x,y,z))}{\partial y} + \frac{\partial R(x,y,z))}{\partial z} \right )dxdydz

因为空间曲面围成的是空间几何体,所以将其进行三重积分

那么最后得到高斯公式 

 随之出现的\frac{\partial P(x,y,z))}{\partial x}+\frac{\partial Q(x,y,z))}{\partial y} + \frac{\partial R(x,y,z))}{\partial z}也就是场论中一个重要的概念 散度 ,所以高斯定理也叫做散度定理。

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 高斯公式是一种数学结论,它的公式是:∫f(x)dx = (f(a) + f(b))/2 + ∑i=1n (f(x_i) - (f(a) + f(b))/2)wi,其中a和b是定积分的下限和上限,x_i是积分的节点,wi是公式中的系数。 ### 回答2: 高等数学中的高斯公式是一个与曲线积分有关的重要公式,广泛应用于向量分析、微分几何、电磁学等领域。高斯公式可以将曲线积分转化为面积、体积的积分形式,使得计算更加方便。 高斯公式的一般形式为:$$\oint_S \textbf{F} \cdot \textbf{n} \, dS = \iiint_V \nabla \cdot \textbf{F} \, dV$$其中,$\textbf{F}$为向量场,$\textbf{n}$为曲面$S$上的单位法向量,$\nabla \cdot \textbf{F}$为向量场$\textbf{F}$的散度(即对向量场取散的结果),$dS$表示曲面元素的面积,$dV$表示体积元素。 这个公式的意义在于,通过对曲面上每个点上的向量$F$在其法向量$n$方向上的投影进行积分,可以得到整个曲面上的向量场$\textbf{F}$对曲面的影响大小(即通量);而右侧的积分则表示了向量场$\textbf{F}$在该曲面所包围的空间内的变化率。 高斯公式的应用非常广泛,例如在电磁学中,可以利用该公式计算电场和磁场的通量;在流体力学中,可以计算流场的通量;在微分几何中,可以计算曲率的变化等。 总之,高等数学中的高斯公式是一个非常重要的定理,它连接了曲线积分与面积、体积的积分之间的关系,为我们研究向量场在曲面和空间中的分布提供了一个有力的工具。 ### 回答3: 高等数学中的高斯公式是一个重要的积分公式。它将多重积分转化为对单个变量的积分运算,简化了计算过程。 高斯公式用于求解平面区域、曲面和空间区域内的某个量的积分。其一般形式为∯f(x,y)dS=∬Df(x,y)ds。 其中,积分区域D可以是二维平面上的有界区域,曲面或三维空间中的有界区域。f(x,y)表示待求的函数,dS表示曲面上的面积元素。ds表示平面上的面积元素。 高斯公式的核心思想是将积分区域D划分为无数小的区域,然后对每个小区域进行积分运算,并将所有小区域的积分结果相加。此外,公式中的f(x,y)函数可以是常数函数、多项式函数、三角函数等各种类型的函数。 高斯公式的应用广泛,可以解决许多与平面和空间区域有关的物理和数学问题。例如,计算平面曲线的弧长、曲面的面积、计算电场的通量等等。 总结来说,高等数学中的高斯公式是一个重要的积分公式,用于将多重积分转化为对单个变量的积分运算。它简化了计算过程,解决了许多与平面和空间区域有关的物理和数学问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值