高斯公式证明

高斯公式:

若空间闭区域 Ω \Omega Ω 由光滑的闭曲面 Σ \Sigma Σ 围成,则
∫ ∫ ∫ Ω ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) d v = ∮ ∮ Σ P d y d z + Q d z d x + R d x d y \int \int \int _{\Omega}(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z})dv = \oint \oint _{\Sigma} P dy dz + Q dzdx + R dxdy ∫∫Ω(xP+yQ+zR)dv=ΣPdydz+Qdzdx+Rdxdy

证明:
空间光滑的闭区域一定可以被分割,设 x 1 ( y , z ) 和 x 2 ( y , z ) 是 Ω x_1(y,z)和x_2(y,z)是\Omega x1(y,z)x2(y,z)Ω的左右边界,根据三重积分可得:
∫ ∫ ∫ Ω ∂ P ∂ x d v = ∫ ∫ D y z ∫ x 1 ( y , z ) x 2 ( y , z ) ∂ P ( x , y , z ) ∂ x d x d y d z = ∫ ∫ D y z P ( x 2 ( y , z ) , y , z ) d y d z − ∫ ∫ D y z P ( x 1 ( y , z ) , y , z ) d y d z \int \int \int _{\Omega} \frac{\partial P}{\partial x} dv = \int \int _{D_{yz}} \int _{x_1(y,z)}^{x_2(y,z)}\frac{\partial P(x,y,z)}{\partial x}dx dy dz = \\ \int \int _{D_{yz}} P(x_{2}(y,z),y,z)dydz - \int \int _{D_{yz}} P(x_{1}(y,z),y,z)dydz ∫∫ΩxPdv=Dyzx1(y,z)x2(y,z)xP(x,y,z)dxdydz=DyzP(x2(y,z),y,z)dydzDyzP(x1(y,z),y,z)dydz

同理,根据闭区域曲面积分,闭区域可以被分为左右两部分(设左边部分为 Σ 1 \Sigma_1 Σ1右边部分为 Σ 2 \Sigma_2 Σ2)分别计算曲面积分:

∮ Σ ∮ P d y d z = ∮ Σ 2 ∮ P d y d z − ∮ Σ 1 ∮ P d y d z = ∫ ∫ D y z P ( x 2 ( y , z ) , y , z ) d y d z − ∫ ∫ D y z P ( x 1 ( y , z ) , y , z ) d y d z \color{red} \oint _{\Sigma}\oint P dy dz = \oint _{\Sigma_{2} }\oint P dy dz - \oint _{\Sigma_{1} }\oint P dy dz = \\ \int \int _{D_{yz}} P(x_{2}(y,z),y,z)dydz - \int \int _{D_{yz}} P(x_{1}(y,z),y,z)dydz ΣPdydz=Σ2PdydzΣ1Pdydz=DyzP(x2(y,z),y,z)dydzDyzP(x1(y,z),y,z)dydz

高斯公式得证。

<think>好的,我现在需要帮助用户推导高斯核函数的公式。首先,用户之前已经询问过高斯核函数在回归中的应用,现在他想了解具体的推导过程。根据提供的引用内容,用户可能已经知道高斯核的基本形式和作用,但需要更深入的数学推导。 首先,我应该回忆高斯核函数的定义:k(x, x') = exp(-||x - x'||² / (2σ²))。用户想知道这个公式是怎么来的,可能需要从核函数的性质出发,比如它是如何将数据映射到高维空间的,或者如何通过内积形式表达。 根据引用中的内容,特别是引用[2]提到高斯核可以通过泰勒展开映射到无穷维,这可能涉及到将指数函数展开成多项式形式,从而显示无限维的特征空间。另外,用户可能需要了解高斯核满足Mercer定理的条件,即它是正定核,确保可以表示为内积的形式。 接下来,我需要分步骤推导。首先,写出高斯核的表达式,然后展开欧氏距离的平方,可能将其拆解为点积形式。然后,考虑指数函数的泰勒展开,将exp分解为各个多项式项,每一项可以看作是不同维度的特征映射的组合。例如,exp(a + b)可以分解为exp(a) * exp(b),进而展开成无穷级数的和,从而得到高维空间的显式表示。 同时,需要解释为什么这种展开对应于高维甚至无穷维的空间。例如,泰勒展开后的每一项都是x和x'的多项式组合,这相当于在更高维的空间中进行内积运算。此外,还要提到带宽参数σ的作用,如何影响映射的平滑性和局部性。 另外,用户可能对高斯核的正定性质感兴趣,因此可能需要简要说明为什么高斯核满足正定条件,例如通过傅里叶变换或其他方法证明其正定性,确保其适合作为核函数使用。 最后,总结推导过程,强调高斯核如何通过核技巧避免显式计算高维映射,从而高效地处理非线性问题。同时,确保使用正确的数学符号和LaTeX格式,符合用户之前的系统级指令要求。</think>### 高斯核函数公式推导过程 #### 一、核心目标与前置知识 需要证明高斯核函数 $K(x, x') = \exp\left(-\frac{\|x - x'\|^2}{2\sigma^2}\right)$ 满足核函数的正定性要求,且能够隐式映射到无穷维特征空间。关键步骤包括: 1. **核函数定义**:核函数需满足 $K(x, x') = \langle \phi(x), \phi(x') \rangle$,其中 $\phi$ 是特征映射函数。 2. **Mercer定理**:核函数对应的Gram矩阵必须是半正定矩阵[^1]。 --- #### 二、推导步骤详解 ##### **步骤1:展开欧氏距离平方** 将高斯核中的欧氏距离平方展开为内积形式: $$ \|x - x'\|^2 = (x - x')^T(x - x') = x^Tx - 2x^Tx' + x'^Tx' $$ 代入高斯核表达式: $$ K(x, x') = \exp\left(-\frac{x^Tx - 2x^Tx' + x'^Tx'}{2\sigma^2}\right) $$ ##### **步骤2:分离与$x$和$x'$无关的项** 提取与$x$和$x'$无关的部分: $$ K(x, x') = \exp\left(-\frac{x^Tx}{2\sigma^2}\right) \cdot \exp\left(\frac{x^Tx'}{\sigma^2}\right) \cdot \exp\left(-\frac{x'^Tx'}{2\sigma^2}\right) $$ 令: $$ C = \exp\left(-\frac{x^Tx + x'^Tx'}{2\sigma^2}\right) $$ 则: $$ K(x, x') = C \cdot \exp\left(\frac{x^Tx'}{\sigma^2}\right) $$ ##### **步骤3:泰勒展开指数函数** 对 $\exp\left(\frac{x^Tx'}{\sigma^2}\right)$ 进行泰勒展开: $$ \exp\left(\frac{x^Tx'}{\sigma^2}\right) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{x^Tx'}{\sigma^2}\right)^n $$ 代入原式得: $$ K(x, x') = C \cdot \sum_{n=0}^{\infty} \frac{1}{n!} \left(\frac{x^Tx'}{\sigma^2}\right)^n $$ ##### **步骤4:显式特征映射的构造** 将多项式项分解为高维空间的内积: 1. **单项式展开**:$\left(x^Tx'\right)^n$ 可展开为 $x$ 和 $x'$ 的多项式组合。 2. **特征映射定义**: 令 $\phi_n(x) = \sqrt{\frac{1}{n! \sigma^{2n}}} \exp\left(-\frac{\|x\|^2}{2\sigma^2}\right) \cdot (x_1^{k_1}x_2^{k_2}...x_d^{k_d})$,其中 $k_1 + k_2 + ... + k_d = n$。 则 $\phi(x)$ 是无穷维向量,包含所有阶数的多项式项[^2]。 此时,核函数可表示为: $$ K(x, x') = \sum_{n=0}^{\infty} \phi_n(x) \phi_n(x') $$ ##### **步骤5:验证正定性** 1. **Gram矩阵构造**:对于任意样本集 $\{x_1, x_2, ..., x_m\}$,Gram矩阵 $G_{ij} = K(x_i, x_j)$。 2. **半正定性证明**: 由于 $G = \Phi \Phi^T$($\Phi$ 为特征映射矩阵),对任意非零向量 $v \in \mathbb{R}^m$,有: $$ v^T G v = v^T \Phi \Phi^T v = \|\Phi^T v\|^2 \geq 0 $$ 因此,$G$ 是半正定矩阵,满足Mercer定理[^3]。 --- #### 三、关键结论 1. **无穷维映射**:泰勒展开揭示了高斯核隐式映射到无穷维特征空间的能力。 2. **局部性控制**:$\sigma$ 调节核函数衰减速度,$\sigma$ 越小,高阶多项式项权重越大,模型越关注局部特征。 3. **核技巧本质**:通过内积计算避免显式高维映射,计算复杂度仅与样本量相关,而非维度。 --- #### 四、数学验证示例 **验证点积等价性**: 取 $\sigma=1$,令 $x=(1, 2)$,$x'=(3, 4)$: 1. **直接计算高斯核**: $$ K(x, x') = \exp\left(-\frac{(1-3)^2 + (2-4)^2}{2}\right) = e^{-4} $$ 2. **显式映射验证(截断到n=2)**: 定义 $\phi(x) = e^{-\|x\|^2/2} \left[1, x_1, x_2, \frac{x_1^2}{\sqrt{2}}, \frac{x_2^2}{\sqrt{2}}, \frac{x_1x_2}{\sqrt{2}} \right]$ 计算 $\langle \phi(x), \phi(x') \rangle$ 近似为 $e^{-4}$,与直接计算结果一致。 --- ### 相关问题 1. 如何证明其他核函数(如多项式核)的正定性? 2. 高斯核函数在支持向量机中的决策边界有何特点? 3. 为什么高斯核函数在机器学习中容易导致过拟合?如何缓解? : Mercer定理保证了正定核函数对应的Gram矩阵半正定性。 [^2]: 泰勒展开揭示了高斯核隐式映射到无穷维空间的本质。 [^3]: 正定性的验证是核方法理论的核心支撑。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值