1.背景
用机器学习的方法训练势函数,摆脱了势函数的限制,无论有无经验势,都可以做MD模拟,毫无疑问,十分利于科研。训练来源的数据为AIMD的动力学过程,数据的精度也是很值得相信的。前景很好,缺点就是计算量,时间有点长。那训练出来的势函数准确性怎么衡量,精度是不是比经验势高?在论文的撰写中,这一部分的验证无法避免。基于此。下面给出了一些分析的建议。
2.损失函数,预测集合测试集之间的R2关系等来对比。
在微信公众号前面几篇推文中训练了硅的势函数,在这里拿来对比说明一下。
a: R2是对线性模型评估的一种评价指标,其值最大为1,最小为0,当值越接近于1,则说明模型越好;值越接近于0,则模型越差。那下图中的R2=0.95,表示线性还行。
b:损失函数:损失函数(loss function)就是用来度量模型的预测值f(x)与真实值Y的差异程度的运算函数,损失函数越小,模型的鲁棒性就越好。
3.根据物理特性来衡量准确性。
a:以硅为例,DOS(Density of State)曲线分布。
计算出来的dos很明显和经验势不同,存在偏差。还要加上vasp的计算结果验证,自己计算过很符合。
b:以水为例。计算径向分布函数,振动态密度等。
计算结果和文献(PHYSICAL REVIEW B 104, 224202 (2021))对比。非常完美。
c:势函数曲线对比。这个很有挑战性了。结果依旧不错。
4.总结
有空的时候继续更新,如有问题可以联系我。欢迎关注公众号:硕博科研小助手