-
背景:DP势有着AIMD的计算精度,也具备lammps高效的运行速度和效率,是一个强有力的工具。在先前的推文中,已经介绍了deepmd的安装,训练,结果验证。然而它存在一定的问题,问题在于,训练的数据来自于数千步的AIMD过程,各个步数之间有着强烈的相关性,且结构相差不大,这对于探索相空间而言,略有瑕疵。因此,引进主动学习+增强采样的方法非常利于相空间的探索,可提高外推效果,增强机器学习的准确性。下文以SrTiO3为例来讲述(文献放在末尾)。
-
DP-GEN的介绍:
DP-GEN是一款结合主动学习的软件包,通过调用deepmd-kit,lammps和vasp,达到精确训练势函数的目的。工作流程通常包括三个过程:训练,探索相空间和vasp单点能计算。大概流程就是利用初始数据训练出四个势函数,用其中一个势函数跑lammps 计算体系原子受力,并用其他三个势函数的预测结果对比,体系原子的最大受力超过fmax 则认为是糟糕构型(舍去),小于fmin则认为势函数预测准确,在fmin和fmax之间则为候补构型,将候补构型挑选一定数量进行下一步vasp单点能计算,完成后。将挑选构型加入到初始数据集中训练。反复迭代,直至准确度达到99%。
-
SrTiO3势函数训练过程 详情见公众号推文(硕博科研小助手)。
欢迎关注公众号:硕博科研小助手,一起交流学习。