open MMlab学习笔记五

真值框总数与检测算法无关,因此只需将检测结果区分为 TP 和 FP 即可计算 recall 和 precision。

两种极端情况:

1. 检测器将所有锚框都判断为物体:召回率≈100%,但大量背景框预测为物体,FP很高,准确率很低。

2. 检测器只输出确信度最高的1个检测框:以很大概率检测正确,准确率=100%,但因为大量物体被预测为背景,FN很高,召回率很低。

一个完美的检测器应该有100%召回率和100%的精度;在算法能力有限的情况下,应该平衡二者

通常做法:将检测框按置信度排序, 仅输出置信度最高的若干个框

置信度 = 分类概率,或修正后的分类概率(YOLO、FCOS)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值