真值框总数与检测算法无关,因此只需将检测结果区分为 TP 和 FP 即可计算 recall 和 precision。
两种极端情况:
1. 检测器将所有锚框都判断为物体:召回率≈100%,但大量背景框预测为物体,FP很高,准确率很低。
2. 检测器只输出确信度最高的1个检测框:以很大概率检测正确,准确率=100%,但因为大量物体被预测为背景,FN很高,召回率很低。
一个完美的检测器应该有100%召回率和100%的精度;在算法能力有限的情况下,应该平衡二者
通常做法:将检测框按置信度排序, 仅输出置信度最高的若干个框
置信度 = 分类概率,或修正后的分类概率(YOLO、FCOS)