OpenMMLab 是一个由香港中文大学多媒体实验室 (MMLab) 发起的开源项目,旨在建立一个通用的、模块化的深度学习模型框架,以便于研究者和开发者能够快速构建和部署深度学习模型。以下是 OpenMMLab 提供的一些常用的深度学习模型框架的总结,包括但不局限于此,详细可参考https://github.com/orgs/open-mmlab/repositories :
-
MMClassification: 用于图像分类任务的框架,支持多种分类模型和损失函数。
-
MMDetection: 一个全面的、模块化的、灵活的目标检测工具箱,支持单阶段和双阶段检测器。
-
MMSegmentation: 用于语义分割、实例分割和全景分割的框架,提供多种分割网络结构。
-
MMAction2: 视频理解工具箱,专注于视频动作识别、动作检测和视频对象分割。
-
MMTracking: 多目标跟踪框架,包含多种跟踪算法,如 SiamRPN、ATOM 等。
-
MMPose: 人体姿态估计框架,提供2D和3D人体关键点检测算法。
-
MMOCR: 光学字符识别 (OCR)