open-mmlab学习笔记

OpenMMLab 是一个由香港中文大学多媒体实验室 (MMLab) 发起的开源项目,旨在建立一个通用的、模块化的深度学习模型框架,以便于研究者和开发者能够快速构建和部署深度学习模型。以下是 OpenMMLab 提供的一些常用的深度学习模型框架的总结,包括但不局限于此,详细可参考https://github.com/orgs/open-mmlab/repositories :

  1. MMClassification: 用于图像分类任务的框架,支持多种分类模型和损失函数。

  2. MMDetection: 一个全面的、模块化的、灵活的目标检测工具箱,支持单阶段和双阶段检测器。

  3. MMSegmentation: 用于语义分割、实例分割和全景分割的框架,提供多种分割网络结构。

  4. MMAction2: 视频理解工具箱,专注于视频动作识别、动作检测和视频对象分割。

  5. MMTracking: 多目标跟踪框架,包含多种跟踪算法,如 SiamRPN、ATOM 等。

  6. MMPose: 人体姿态估计框架,提供2D和3D人体关键点检测算法。

  7. MMOCR: 光学字符识别 (OCR)

### ThinkBook 16p 深度学习软件下载指南 #### 笔记本配置确认 在为ThinkBook 16p安装深度学习相关软件之前,需先了解该设备的具体硬件规格。通常情况下,这类笔记本配备有NVIDIA独立显卡,支持CUDA加速计算[^1]。 #### 安装必要的驱动程序 为了使GPU能够正常工作于深度学习框架下,必须安装对应的NVIDIA驱动以及CUDA工具包。例如,在Driver Version: 550.120 和 CUDA Version: 12.4的情况下,确保操作系统已更新至最新版本并按照官方文档完成相应设置[^3]。 ```bash sudo apt-get update && sudo apt-get upgrade -y wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/cuda-ubuntu2004.pin sudo mv cuda-ubuntu2004.pin /etc/apt/preferences.d/cuda-repository-pin-600 ``` #### 配置Anaconda环境 考虑到Python生态系统的复杂性和依赖管理的需求,建议通过Anaconda创建虚拟环境来进行开发。这不仅简化了库文件的管理和隔离不同项目之间的冲突,还方便后续部署和迁移[^4]。 ```bash # 创建新的Conda环境 conda create --name dl_env python=3.9 conda activate dl_env # 安装PyTorch和其他常用库 pip install torch torchvision torchaudio cudatoolkit=12.4 ``` #### 获取开源项目源码 许多优秀的研究团队会将其成果发布到GitHub平台上供公众访问。比如OpenPCDet就是一个专注于点云处理的任务检测器,它提供了详细的README说明帮助初学者快速入门。 ```bash git clone https://github.com/open-mmlab/OpenPCDet.git cd OpenPCDet/ pip install -r requirements.txt ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xiaomu_347

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值