【SCI1区】Matlab实现混沌博弈优化算法CGO-Transformer-GRU故障诊断算法研究

  ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab完整代码及仿真定制内容点击👇

智能优化算法       神经网络预测       雷达通信       无线传感器        电力系统

信号处理              图像处理               路径规划       元胞自动机        无人机

物理应用        机器学习

🔥 内容介绍

摘要

随着工业自动化和智能化的不断发展,设备故障诊断技术的重要性日益凸显。传统的故障诊断方法往往依赖于专家经验,难以应对复杂、非线性和动态变化的故障模式。针对这一问题,本文提出了一种基于混沌博弈优化算法(CGO)、Transformer和门控循环单元(GRU)的故障诊断算法,并使用Matlab进行了仿真验证。该算法通过CGO优化Transformer和GRU的超参数,提高了模型的泛化能力和诊断精度,在复杂工业环境中展现出优异的诊断效果。

关键词:故障诊断,混沌博弈优化算法,Transformer,GRU,Matlab

1. 引言

工业设备故障诊断是现代工业生产中至关重要的环节,直接影响着生产效率、产品质量和安全运行。传统的故障诊断方法主要依赖于专家经验和预定义规则,存在以下局限性:

  • 依赖专家经验,难以应对复杂故障模式。 对于一些复杂的故障模式,例如多重故障、隐性故障等,传统方法难以准确识别和诊断。

  • 缺乏自学习能力,无法适应动态变化的系统。 当设备运行环境发生改变时,传统方法的诊断精度会大幅下降。

  • 诊断效率低,难以满足实时诊断需求。 传统方法通常需要大量的专家时间和资源,难以满足工业生产的实时诊断要求。

为了克服传统故障诊断方法的不足,近年来,深度学习技术逐渐应用于故障诊断领域,取得了显著成果。其中,Transformer和GRU作为深度学习模型的重要组成部分,在处理序列数据方面表现出优异的性能。然而,传统的Transformer和GRU模型存在以下问题:

  • 超参数选择困难,难以优化模型性能。 Transformer和GRU模型包含大量超参数,如层数、隐藏单元数等,手动调整超参数耗时且效率低下。

  • 易陷入局部最优,泛化能力不足。 传统的优化算法容易陷入局部最优,导致模型的泛化能力不足,无法应对未知故障模式。

为了解决上述问题,本文提出了一种基于CGO、Transformer和GRU的故障诊断算法,该算法利用CGO优化Transformer和GRU的超参数,提高了模型的泛化能力和诊断精度。

2. 算法原理

2.1 混沌博弈优化算法 (CGO)

CGO是一种新型的元启发式优化算法,它结合了混沌理论和博弈论的思想,具有较强的全局搜索能力和局部优化能力。CGO算法主要步骤如下:

  1. 初始化种群。

  2. 利用混沌映射生成新的个体,增强种群的多样性。

  3. 根据个体适应度值,进行博弈策略选择。

  4. 利用博弈策略更新个体,并进行局部优化。

  5. 重复步骤2-4,直到满足停止条件。

2.2 Transformer

Transformer是一种基于注意力机制的深度学习模型,它能够有效地捕捉序列数据中的长期依赖关系。Transformer的核心机制是自注意力机制,它能够计算序列中每个词语之间的注意力权重,并根据权重进行加权求和,从而得到每个词语的表示。

2.3 门控循环单元 (GRU)

GRU是一种特殊的循环神经网络,它能够有效地处理时序数据。GRU引入了门控机制,能够选择性地保留或丢弃历史信息,从而避免梯度消失问题,并提高模型的记忆能力。

2.4 算法框架

本文提出的CGO-Transformer-GRU故障诊断算法框架如图1所示。

该算法流程如下:

  1. 数据预处理:对原始数据进行清洗、归一化等预处理操作。

  2. 特征提取:利用Transformer模型提取数据的深层特征。

  3. 故障分类:利用GRU模型对特征进行分类,并输出诊断结果。

  4. CGO优化:利用CGO算法优化Transformer和GRU的超参数,提高模型的诊断精度。

3. 仿真实验

3.1 数据集

本文采用公开的轴承数据集进行仿真实验。该数据集包含不同运行状态下的轴承振动信号,可以模拟轴承的正常运行、轻微故障、严重故障等状态。

4. 结论

本文提出了一种基于CGO、Transformer和GRU的故障诊断算法,并通过仿真实验验证了其有效性。该算法利用CGO优化Transformer和GRU的超参数,提高了模型的泛化能力和诊断精度,在复杂工业环境中展现出优异的诊断效果。未来,我们将继续研究更先进的故障诊断方法,进一步提高诊断精度和效率。

⛳️ 运行结果

🔗 参考文献

🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料

🎁  私信完整代码和数据获取及论文数模仿真定制🌈

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
根据提供的引用内容,混沌博弈优化算法是一种基于混沌理论和博弈论的优化算法。虽然提供的引用中给出了MATLAB代码,但是我们同样可以使用Python实现算法。以下是一个简单的Python实现示例: ```python import numpy as np # 定义目标函数 def obj_func(x): return x[0]**2 + x[1]**2 # 定义混沌映射函数 def chaos_map(x0, a=6): return a * x0 * (1 - x0) # 定义混沌博弈优化算法 def CGO(obj_func, dim=2, max_iter=100, pop_size=50, a=6): # 初始化种群 pop = np.random.rand(pop_size, dim) # 初始化个体最优解和全局最优解 p_best = pop.copy() g_best = p_best[obj_func(p_best).argmin()].copy() # 迭代寻优 for i in range(max_iter): # 计算混沌映射值 x0 = chaos_map(pop[:, 0], a=a) # 计算新的种群 pop_new = np.zeros_like(pop) for j in range(dim): # 计算混沌映射值 x0 = chaos_map(x0, a=a) # 计算新的种群 pop_new[:, j] = (1 - x0) * pop[:, j] + x0 * g_best[j] # 更新个体最优解和全局最优解 p_best_mask = obj_func(pop_new) < obj_func(p_best) p_best[p_best_mask] = pop_new[p_best_mask] g_best_mask = obj_func(p_best) < obj_func(g_best) g_best = p_best[g_best_mask][0].copy() return g_best, obj_func(g_best) # 测试 if __name__ == '__main__': g_best, obj_val = CGO(obj_func) print('最优解:', g_best) print('最优目标函数值:', obj_val) ``` 该示例中,我们首先定义了目标函数`obj_func`,然后定义了混沌映射函数`chaos_map`,最后定义了混沌博弈优化算法`CGO`。在`CGO`函数中,我们首先初始化种群,然后迭代寻优,每次迭代中都会计算混沌映射值,并根据混沌映射值计算新的种群。在更新个体最优解和全局最优解时,我们使用了布尔掩码来筛选出更优的解。最后,我们在`if __name__ == '__main__'`中测试了该算法,并输出了最优解和最优目标函数值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值