基于小脑模型神经网络的轨迹跟踪研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

轨迹跟踪是机器人学、自动化控制以及许多其他领域的核心问题。其目标是使系统(如机器人末端执行器或飞行器)精确地跟随预定的路径。传统的轨迹跟踪方法依赖于精确的系统模型和鲁棒的控制器设计,然而,在面对复杂、不确定或动态变化的外部环境时,这些方法的性能往往会受到限制。近年来,受生物智能的启发,基于神经网络的控制方法展现出巨大的潜力。特别是,小脑作为生物体运动控制和学习的关键脑区,其独特的结构和功能为设计高效、自适应的轨迹跟踪控制器提供了重要的借鉴。本文深入探讨了基于小脑模型神经网络的轨迹跟踪研究。首先,阐述了轨迹跟踪问题的基本概念和挑战,并回顾了传统的轨迹跟踪方法及其局限性。其次,详细介绍了小脑的生物学结构和计算模型,重点阐述了小脑在大脑回路中的作用以及其学习机制,特别是监督学习和误差驱动的学习。再次,构建了基于小脑模型神经网络的轨迹跟踪控制框架,并探讨了不同的网络结构设计、学习算法以及与传统控制方法的结合策略。最后,通过仿真或实验验证了基于小脑模型神经网络在不同轨迹跟踪任务中的有效性、鲁棒性和自适应性,并对未来的研究方向进行了展望。

关键词: 轨迹跟踪;小脑模型;神经网络;运动控制;自适应控制;机器人学

1. 引言

轨迹跟踪是控制理论和实践中一个至关重要的研究领域。它涉及设计控制律,使得系统的状态能够精确地遵循预先设定的时间序列或空间路径。轨迹跟踪在工业机器人、自动驾驶汽车、飞行器、医疗设备以及许多其他应用中都扮演着核心角色。例如,在工业生产线上,机器人需要精确地沿着指定的轨迹移动以完成抓取、焊接或喷涂等任务;在自动驾驶系统中,车辆需要跟踪预设的导航路径;在手术机器人中,机械臂需要精确地跟随外科医生的操作轨迹。

传统的轨迹跟踪方法通常基于系统的数学模型,例如PID控制、反馈线性化、滑模控制等。这些方法在系统模型精确已知且外部环境相对稳定时表现良好。然而,实际应用中,系统模型往往存在不确定性,如参数变化、未建模动力学以及外部扰动(如风力、地面摩擦、负载变化等)。这些不确定性会显著降低传统控制器的跟踪精度和鲁棒性。此外,对于非线性或时变系统,建立精确的数学模型本身就是一个巨大的挑战。

为了应对这些挑战,研究者们开始寻求更具鲁棒性和自适应性的控制方法。近年来,受生物神经网络的启发,神经网络控制逐渐成为一个热门的研究方向。神经网络具有强大的非线性映射能力和学习能力,能够通过学习从数据中提取规律,从而应对系统的不确定性和复杂性。

在众多的神经网络模型中,小脑模型神经网络因其与生物体运动控制的紧密联系而备受关注。小脑是脊椎动物脑部的重要组成部分,在运动协调、姿势控制、平衡维持以及运动学习中发挥着关键作用。小脑独特的神经网络结构和学习机制,特别是其利用感觉信息进行误差驱动的学习,为设计能够适应复杂和变化环境的轨迹跟踪控制器提供了宝贵的启示。

本文旨在深入探讨基于小脑模型神经网络的轨迹跟踪研究。我们将系统地回顾相关研究进展,分析小脑模型神经网络在轨迹跟踪中的应用优势和挑战,并对未来的发展方向进行展望。

2. 轨迹跟踪问题的阐述与传统方法回顾

传统轨迹跟踪方法及其局限性

传统的轨迹跟踪方法主要包括:

  • PID 控制 (Proportional-Integral-Derivative Control):

     PID 控制是最常用也是最简单的控制方法之一。它根据当前误差、误差的积分以及误差的微分来计算控制输出。PID 控制结构简单,易于实现,但在面对复杂的非线性系统或存在较大扰动时,其性能可能会下降,且参数整定较为困难。

  • 反馈线性化 (Feedback Linearization):

     反馈线性化是一种将非线性系统通过状态反馈和坐标变换转化为线性系统的控制方法。如果系统满足一定的可反馈线性化条件,则可以通过设计线性控制律来跟踪轨迹。然而,反馈线性化对系统模型的精确性要求很高,且对于许多实际系统而言,满足反馈线性化条件的难度较大。

  • 滑模控制 (Sliding Mode Control):

     滑模控制是一种鲁棒的非线性控制方法。其核心思想是将系统的状态引导到预先设计的滑动模态面上,并在滑动模态面上运动。滑模控制对系统参数变化和外部扰动具有较强的鲁棒性,但可能会产生抖振现象,影响控制精度和系统寿命。

  • 基于模型的预测控制 (Model Predictive Control, MPC):

     MPC 通过在一个有限的时间窗口内优化控制输入来预测系统的未来行为,并选择最优的控制序列。MPC 能够处理约束条件,并具有较好的鲁棒性,但计算量较大,尤其对于高维系统。

传统方法的局限性主要体现在以下几个方面:

  • 对模型依赖性强:

     大多数传统方法都需要建立精确的系统数学模型。然而,实际系统中模型往往存在不确定性,或者难以建立精确的模型。

  • 对扰动和不确定性鲁棒性有限:

     在面对较大的外部扰动或内部参数变化时,传统方法的性能可能会显著下降。

  • 难以处理复杂的非线性动力学:

     对于高度非线性的系统,设计有效的传统控制器往往非常困难。

  • 缺乏自适应能力:

     传统控制器通常是定参数的,难以适应系统或环境的变化。

因此,寻找具有更强自适应性、鲁棒性和模型无关性的轨迹跟踪方法,成为当前控制领域的重要研究方向。

3. 小脑的生物学结构与计算模型

小脑作为生物体运动控制的关键脑区,其独特的结构和功能为设计新型控制器提供了重要的生物学基础。

3.1 小脑的生物学结构

小脑位于大脑的后下方,由皮质和深部核团组成。小脑皮质具有高度规则的结构,主要包含以下几种神经元:

  • 浦肯野细胞 (Purkinje cells):

     是小脑皮质的主要输出神经元,其轴突投射到小脑深部核团。浦肯野细胞是抑制性神经元,其活动受到平行纤维和攀缘纤维的调节。

  • 颗粒细胞 (Granule cells):

     是小脑皮质数量最多的神经元,其轴突形成平行纤维,与浦肯野细胞的树突相突触。

  • 高尔基细胞 (Golgi cells):

     是小脑皮质的中间神经元,接受平行纤维的输入,并抑制颗粒细胞的活动。

  • 星形细胞 (Stellate cells) 和篮状细胞 (Basket cells):

     是小脑皮质的抑制性中间神经元,接受平行纤维的输入,并抑制浦肯野细胞的活动。

小脑的输入主要通过苔藓纤维 (mossy fibers) 和攀缘纤维 (climbing fibers) 进入。苔藓纤维主要来自脑干和脊髓,携带运动指令、感觉信息以及与运动相关的上下文信息。苔藓纤维与颗粒细胞和深部核团的神经元形成突触。攀缘纤维主要来自下橄榄核 (inferior olive),每条攀缘纤维与一个浦肯野细胞形成强大的突触连接。攀缘纤维被认为是传递运动误差信号的关键通路。

小脑的输出主要通过浦肯野细胞投射到小脑深部核团,深部核团再将信号传递给脑干、丘脑以及其他大脑区域,从而影响运动指令的产生和调节。

3.2 小脑的计算模型与学习机制

基于小脑的生物学结构和生理学实验结果,研究者们提出了多种小脑的计算模型。其中,比较有影响力的模型包括:

  • Marr-Albus 模型:

     该模型将小脑视为一个监督学习系统。颗粒细胞作为输入层的特征提取器,将苔藓纤维输入转化为高维稀疏的表示。浦肯野细胞作为输出层的学习单元,通过调整其与平行纤维之间的突触权重,学习输入与期望输出之间的映射关系。攀缘纤维被认为是传递期望输出与实际输出之间的误差信号,用于调节平行纤维-浦肯野细胞突触的可塑性。

  • 预测学习模型:

     该模型认为小脑主要负责预测运动的未来结果或感觉反馈。通过学习,小脑能够根据当前的运动指令和感觉信息预测运动的轨迹或可能出现的误差,从而提前进行补偿或调整。

  • 内部模型模型:

     该模型认为小脑建立并维持着身体和环境的内部模型。这些内部模型可以用来预测运动的动力学,生成前馈控制信号,从而实现快速和精确的运动。

小脑的学习机制被认为是其实现运动控制和适应性能力的关键。主要的学习机制包括:

  • 突触可塑性 (Synaptic Plasticity):

     小脑中存在多种形式的突触可塑性,包括长时程抑制 (Long-Term Depression, LTD) 和长时程增强 (Long-Term Potentiation, LTP)。特别是,在浦肯野细胞与平行纤维的突触处,攀缘纤维的活动能够诱导 LTD,这被认为是小脑学习的主要机制之一。当实际运动与期望运动存在误差时,攀缘纤维会放电,导致与当前运动相关的平行纤维-浦肯野细胞突触连接减弱,从而调整浦肯野细胞的输出,减少后续的运动误差。

  • 误差驱动的学习:

     小脑的学习过程是典型的误差驱动学习。攀缘纤维传递的误差信号作为学习的指导信号,促使小脑调整其内部连接和处理方式,以减小未来运动中的误差。这种学习方式与工程领域的监督学习和强化学习有相似之处。

将小脑的这些计算原理和学习机制应用于工程控制系统,尤其是轨迹跟踪,具有重要的理论意义和应用价值。

4. 基于小脑模型神经网络的轨迹跟踪控制框架

基于小脑的生物学结构和计算模型,可以构建多种用于轨迹跟踪的小脑模型神经网络控制框架。这些框架的核心思想是利用神经网络的非线性映射和学习能力来模仿小脑的功能,实现对复杂轨迹的精确跟踪。

4.1 控制框架设计

一个典型的小脑模型神经网络轨迹跟踪控制框架通常包括以下几个组成部分:

  • 输入层:

     接收系统的状态信息(如位置、速度、加速度)、期望轨迹信息以及可能的外部感知信息。这些输入可以模仿苔藓纤维的功能。

  • 中间层 (类似颗粒细胞/平行纤维):

     对输入信息进行非线性变换和特征提取,生成高维的特征向量。这一层可以采用径向基函数网络 (RBFN)、模糊逻辑系统或者具有非线性激活函数的隐藏层神经元来实现,以模拟颗粒细胞将苔藓纤维输入转化为平行纤维活动的功能。

  • 输出层 (类似浦肯野细胞):

     根据中间层的特征向量,生成控制输出或前馈控制信号。这一层通常由线性神经元或具有适当激活函数的神经元组成。其连接权重是需要学习的关键参数,模拟浦肯野细胞与平行纤维之间的突触连接。

  • 误差信号生成 (类似攀缘纤维):

     生成用于驱动学习的误差信号。在轨迹跟踪任务中,这个误差信号通常是实际输出(如系统当前状态)与期望输出(如期望轨迹点)之间的差异,或者与系统模型不确定性或外部扰动相关的信号。

  • 学习模块:

     根据误差信号,调整神经网络的连接权重。这个学习过程模仿小脑中的突触可塑性机制,特别是误差驱动的学习规则。

4.2 网络结构设计

具体的小脑模型神经网络结构可以根据应用需求和对生物学模型的模仿程度而有所不同。常见的结构包括:

  • 前馈神经网络:

     最简单的形式是前馈神经网络,其中输入层、中间层和输出层之间存在单向连接。中间层可以采用径向基函数 (RBF) 神经元来模拟颗粒细胞的高维映射功能。

  • 具有特定拓扑结构的神经网络:

     为了更好地模仿小脑皮质的结构,可以设计具有特定连接模式的神经网络。例如,可以模拟平行纤维与浦肯野细胞的连接方式,以及中间神经元的作用。

  • 混合控制结构:

     小脑在生物体中通常与大脑其他区域协同工作。在工程应用中,也可以将小脑模型神经网络与传统控制器(如PID、滑模控制器)相结合,形成混合控制结构。例如,神经网络可以学习系统的非线性动力学作为前馈补偿器,而传统控制器则负责处理残余误差和保证系统的稳定性。

4.3 学习算法

小脑模型神经网络的学习算法是实现其自适应能力的关键。常用的学习算法包括:

  • 基于误差反向传播 (Backpropagation) 的算法:

     如果网络结构是可导的,可以使用误差反向传播算法来计算权重的梯度,并进行更新。然而,直接模仿小脑的误差信号传播方式可能更具有生物学意义。

  • 基于误差信号的权重更新规则:

     模仿小脑中攀缘纤维诱导的突触可塑性,可以设计基于误差信号和输入信号的权重更新规则。例如,可以使用类似于 Delta 规则或其变种的算法,使得当存在误差时,与当前输入相关的连接权重发生改变,以减小误差。

  • 强化学习 (Reinforcement Learning):

     虽然小脑主要被认为是监督学习系统,但其在复杂运动任务中的作用也与强化学习有相似之处。可以将轨迹跟踪问题建模为强化学习问题,利用奖励信号来驱动小脑模型神经网络的学习。

4.4 与传统控制方法的结合

将小脑模型神经网络与传统控制方法相结合,可以充分发挥两者的优势。例如:

  • 神经网络作为前馈控制器:

     神经网络可以学习系统的逆动力学模型,生成前馈控制信号来补偿系统的非线性动力学和已知扰动,而一个鲁棒的反馈控制器则负责处理未建模动力学和未预测的扰动。

  • 神经网络作为反馈控制器:

     神经网络可以直接学习反馈控制律,根据当前状态和期望轨迹生成控制输入。

  • 自适应神经网络控制器:

     将神经网络的参数作为自适应律的一部分,根据系统误差实时调整神经网络的权重。

5. 基于小脑模型神经网络的轨迹跟踪研究进展与应用

基于小脑模型神经网络的轨迹跟踪研究在机器人学、航空航天、自动驾驶等领域取得了显著进展。

5.1 机器人轨迹跟踪

在机器人操作中,基于小脑模型神经网络的控制方法被广泛应用于机械臂的轨迹跟踪。例如,研究者利用小脑模型神经网络学习机械臂的非线性动力学,实现对复杂三维轨迹的精确跟踪,即使在存在负载变化或关节摩擦等不确定性时,也能保持良好的性能。一些研究还将小脑模型神经网络应用于移动机器人的路径跟踪和避障。

5.2 飞行器轨迹跟踪

无人机、直升机等飞行器的轨迹跟踪是另一个重要的应用领域。飞行器动力学复杂,且易受风力等外部扰动的影响。基于小脑模型神经网络的控制方法可以学习飞行器的非线性动力学,并对外部扰动进行补偿,实现对复杂空中轨迹的精确跟踪,提高飞行器的稳定性和控制精度。

5.3 自动驾驶车辆轨迹跟踪

在自动驾驶系统中,车辆需要精确地跟踪规划的路径。基于小脑模型神经网络的方法可以用于学习车辆的非线性模型,实现对不同路况下路径的鲁棒跟踪,并能够适应车辆参数的变化。

5.4 其他应用

除了上述领域,基于小脑模型神经网络的轨迹跟踪方法还被应用于医疗机器人、康复机器人、生物运动模拟等领域。

5.5 现有研究的优势与挑战

基于小脑模型神经网络的轨迹跟踪方法展现出以下优势:

  • 自适应性:

     能够通过学习适应系统参数变化和环境变化。

  • 鲁棒性:

     对模型不确定性和外部扰动具有较强的鲁棒性。

  • 非线性处理能力:

     能够处理复杂的非线性系统动力学。

  • 生物学启发:

     借鉴了生物体的运动控制机制,具有潜在的智能特性。

然而,该领域的研究仍然面临一些挑战:

  • 理论分析的难度:

     神经网络的非线性特性使得理论分析(如稳定性、收敛性证明)变得困难。

  • 网络结构的优化:

     如何设计最优的网络结构以满足特定任务的需求仍需进一步研究。

  • 学习算法的效率与收敛性:

     如何设计高效且能够保证收敛的学习算法是一个重要的课题。

  • 在线学习的实现:

     在实际应用中,需要实现实时的在线学习,以适应动态变化的系统和环境,这对计算资源和算法效率提出了更高的要求。

  • 与生物学机制的深入结合:

     如何更深入地借鉴小脑的生物学细节(如不同神经元的精确功能、不同区域的相互作用)来设计更有效的工程控制系统,是一个长期的研究方向。

6. 未来研究方向展望

基于小脑模型神经网络的轨迹跟踪研究具有广阔的发展前景。未来的研究方向可以集中在以下几个方面:

  • 理论分析的深入:

     发展更 rigorous 的理论工具来分析基于小脑模型神经网络的控制系统的稳定性、收敛性以及鲁棒性。

  • 更精细的生物学模型模仿:

     深入研究小脑不同区域、不同神经元类型之间的相互作用,以及更复杂的学习机制(如前馈和反馈学习的协同作用),并将这些机制融入到神经网络模型中,以提高控制器的性能和智能水平。

  • 多模态信息融合:

     小脑接收来自多种感觉通路的输入。未来的研究可以探索如何将视觉、触觉、听觉等多种感觉信息与内部状态信息相结合,构建更全面的小脑模型神经网络,实现更鲁棒和智能的轨迹跟踪。

  • 层次化控制结构:

     借鉴大脑皮层和小脑在运动控制中的协作关系,设计层次化的控制结构,其中高层负责任务规划和轨迹生成,低层利用小脑模型神经网络实现精确的轨迹跟踪。

  • 强化学习与小脑模型的结合:

     探索将强化学习与小脑模型神经网络相结合,使得控制器能够通过试错和奖励信号来优化其行为,从而在更复杂的未知环境中实现轨迹跟踪。

  • 硬件实现与嵌入式应用:

     研究基于硬件(如 FPGA 或 ASIC)实现高效的小脑模型神经网络控制器,以满足实时性要求,并将其应用于嵌入式系统中。

  • 与其他人工智能技术的融合:

     将小脑模型神经网络与深度学习、迁移学习等其他人工智能技术相结合,进一步提升轨迹跟踪的性能和泛化能力。

7. 结论

本文对基于小脑模型神经网络的轨迹跟踪研究进行了系统的探讨。阐述了轨迹跟踪问题的挑战和传统方法的局限性,并详细介绍了小脑的生物学结构和计算模型。在此基础上,构建了基于小脑模型神经网络的轨迹跟踪控制框架,并讨论了网络结构、学习算法以及与传统控制方法的结合策略。通过回顾相关研究进展,展示了该方法在不同领域的有效性和优势,同时也指出了当前面临的挑战和未来的研究方向。

基于小脑模型神经网络的轨迹跟踪方法,以其独特的自适应性、鲁棒性和非线性处理能力,为解决复杂轨迹跟踪问题提供了新的思路和有效的工具。随着对小脑机制的深入理解以及神经网络技术的发展,基于小脑模型神经网络的轨迹跟踪研究必将取得更大的突破,并在更广泛的领域得到应用,推动机器人学、自动化控制和人工智能等领域的发展。

⛳️ 运行结果

🔗 参考文献

[1] 孙宜标,郭庆鼎,赵希梅.基于模糊小脑模型神经网络的直线伺服跟踪控制研究[J].组合机床与自动化加工技术, 2005(8):3.DOI:10.3969/j.issn.1001-2265.2005.08.019.

[2] 沈伟,施光林.基于气动人工肌肉的自适应模糊小脑模型神经网络位置跟踪控制[J].上海交通大学学报, 2012, 46(4):5.DOI:CNKI:SUN:SHJT.0.2012-04-014.

[3] 孙宜标,郭庆鼎,赵希梅.基于模糊小脑模型神经网络的直线伺服跟踪控制研究[J].组合机床与自动化加工技术, 2005.DOI:CNKI:SUN:ZHJC.0.2005-08-018.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值