【信号调制】使用不同的分类器(逻辑回归分类器、决策树、随机森林、全连接密集层和CNN)来训练模型,以预测不同信噪比值下信号的调制类型附Python代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

信号调制是通信系统中至关重要的一环,它决定了信息如何有效地承载在电磁波上进行传输。不同的调制类型,如ASK、FSK、PSK等,在抗噪声能力、频谱效率等方面表现出不同的特性,适用于不同的通信场景。在实际应用中,往往需要实时准确地识别出接收信号的调制类型,以便进行后续的解调和信息恢复。然而,在存在噪声的环境下,信号的特征会受到干扰,使得调制类型的识别成为一个具有挑战性的问题。信噪比(SNR)是衡量信号强度与噪声强度之比的关键参数,低信噪比意味着信号被噪声淹没得更加严重,调制类型识别的难度也随之增加。

近年来,随着机器学习和深度学习技术的飞速发展,它们在模式识别和分类任务中展现出卓越的性能。将这些技术应用于信号调制类型的识别,有望克服传统方法的局限性,提高识别的准确性和鲁棒性。本文旨在探讨在不同信噪比条件下,使用多种常见的分类器(包括逻辑回归分类器、决策树、随机森林、全连接密集层和卷积神经网络CNN)来训练模型,以预测接收信号的调制类型,并对不同分类器的性能进行评估和比较。

理论基础

信号调制类型识别的本质是一个多分类问题,即根据接收到的信号特征,将其归入预先定义的调制类型类别中。传统的信号调制识别方法通常依赖于信号的统计特征,如瞬时幅度、相位、频率等,并通过阈值判决或特征匹配等方式进行分类。然而,这些方法对噪声敏感,在高噪声环境下性能显著下降。

机器学习和深度学习方法则通过从大量带有标签的训练数据中学习信号的潜在特征和分类规则。

  • 逻辑回归分类器 (Logistic Regression Classifier):

     逻辑回归是一种广义线性模型,用于二分类问题,也可以通过一对多或多对多策略扩展到多分类。它通过sigmoid函数将线性模型的输出映射到(0,1)区间,代表属于某个类别的概率。逻辑回归模型简单,计算效率高,适用于线性可分的特征。

  • 决策树 (Decision Tree):

     决策树是一种非参数监督学习方法,它通过一系列关于特征的判决来递归地划分数据空间,最终将样本分到不同的类别。决策树具有可解释性强的优点,但容易过拟合。

  • 随机森林 (Random Forest):

     随机森林是由多棵决策树组成的集成学习方法。通过bagging策略,对训练数据进行有放回的抽样,并随机选取特征子集来构建每棵决策树,最终的分类结果由多棵树的投票决定。随机森林能够有效降低过拟合风险,提高模型的泛化能力。

  • 全连接密集层 (Fully Connected Dense Layer):

     全连接密集层是神经网络中最基本的组成单元。它将前一层的所有神经元与当前层的所有神经元连接起来,并通过非线性激活函数进行处理。由多个全连接密集层组成的神经网络被称为多层感知机(MLP),可以学习复杂的非线性关系。

  • 卷积神经网络 (Convolutional Neural Network, CNN):

     CNN是一种专门用于处理具有网格状拓扑结构数据(如图像、时间序列)的深度学习模型。它通过卷积层、池化层等结构自动提取数据的局部特征并进行降维。在信号处理领域,可以将信号的幅度谱、相位谱或时频表示等作为输入,利用CNN强大的特征提取能力进行调制类型识别。

预期结果与分析

基于现有的研究成果和理论推测,可以对实验结果进行初步的预期:

  • 低信噪比下:

     在低信噪比环境下,信号特征被噪声严重污染,传统依赖于统计特征的方法和简单的线性模型(如逻辑回归)性能可能迅速下降。决策树和随机森林由于其非线性建模能力,可能在一定程度上优于逻辑回归,但其特征提取能力有限。全连接密集层和CNN,特别是CNN,由于其强大的特征提取能力和对局部特征的感知,有望在低信噪比下展现出更好的鲁棒性,能够从噪声淹没的信号中学习到更有效的判别特征。

  • 高信噪比下:

     在高信噪比环境下,信号特征清晰,噪声影响较小。各种分类器都有望取得较高的识别准确率。此时,模型的复杂度、计算效率和训练时间可能成为更重要的考量因素。简单模型如逻辑回归和决策树可能足以取得良好性能,且计算成本较低。

  • 性能曲线:

     绘制的准确率-信噪比曲线预计会呈现出S形。随着信噪比的增加,准确率逐渐提高,并在较高信噪比下趋于饱和。不同分类器的曲线形状和提升幅度可能会有所不同,反映其在不同噪声水平下的抗干扰能力。深度学习模型的曲线可能在低信噪比区域表现出更陡峭的上升,表明其在噪声环境下的优势。

  • 分类器比较:
    • 逻辑回归:简单,计算快,但对非线性关系和噪声敏感。

    • 决策树:可解释性强,但容易过拟合,对噪声敏感。

    • 随机森林:相对于单棵决策树更鲁棒,泛化能力更强,但计算量增加。

    • 全连接密集层:能够学习复杂的非线性关系,但可能需要更多的训练数据和调优。

    • CNN:在处理具有空间或时间相关性的数据方面具有天然优势,有望从信号的结构中学习更有效的特征,尤其适用于将信号转化为图像或时频表示作为输入。预计在较低信噪比下表现最佳。

结论

本文通过实验对比了逻辑回归分类器、决策树、随机森林、全连接密集层和卷积神经网络在不同信噪比下对信号调制类型的识别性能。实验结果有望揭示:

  1. 随着信噪比的降低,所有分类器的识别性能都会下降,但下降的幅度因分类器类型而异。

  2. 深度学习模型(MLP和CNN)相对于传统机器学习模型(逻辑回归、决策树、随机森林)在低信噪比下通常表现出更优越的性能,尤其体现在更高的准确率和更强的鲁棒性。

  3. CNN由于其强大的特征提取能力,特别适合于处理信号的原始时域样本或其图像表示,有望在所有分类器中展现出最佳的低信噪比识别性能。

  4. 在高信噪比下,各种分类器都能取得较高的准确率,此时模型的计算效率和复杂度也应纳入考虑范围。

未来的研究可以进一步探索更先进的深度学习模型,如循环神经网络(RNN)或注意力机制,以更好地捕捉信号的时序特征;或者尝试将不同分类器进行融合,形成更强大的集成模型。此外,研究在实际通信环境下(如存在多径效应、频率偏移等)不同分类器的性能表现,对于将研究成果应用于实际系统具有重要意义。通过持续的探索和优化,机器学习和深度学习技术将在信号调制识别领域发挥越来越重要的作用,为提升通信系统的智能化和鲁棒性做出贡献。

⛳️ 运行结果

🔗 参考文献

[1] 李韬,李平.一种面向不平衡数据集的组合分类算法[J].电脑与信息技术, 2017, 25(4):5.DOI:10.3969/j.issn.1005-1228.2017.04.006.

[2] 周文,张世琨,丁勇,等.面向低维工控网数据集的对抗样本攻击分析[J].计算机研究与发展, 2020(4):736-745.

[3] 王宇燕,王杜娟,王延章,等.改进随机森林的集成分类方法预测结直肠癌存活性[J].管理科学, 2017, 30(1):12.DOI:10.3969/j.issn.1672-0334.2017.01.009.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值