✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
本文提出了一种基于Blaschke Unwinding自适应傅里叶分解(BU-AFD)的新型信号压缩算法。该算法旨在克服传统傅里叶分解(FFD)在处理非平稳信号,特别是像心电图(ECG)信号这样复杂、时变信号时存在的局限性。通过引入Blaschke Unwinding过程,我们能够更有效地捕获信号的瞬时频率和振幅变化,从而实现更紧凑的信号表示。本文详细阐述了BU-AFD算法的原理,包括Blaschke积的构造、Unwinding过程以及基于BU-AFD的信号压缩框架。随后,我们针对ECG信号的特性,探讨了该算法在ECG信号压缩中的应用,并通过实验验证了其在压缩比、信号重构精度以及计算效率等方面的优势。研究结果表明,基于BU-AFD的信号压缩算法为处理非平稳信号提供了一种有效且高效的途径,尤其在对ECG信号进行高保真压缩方面具有显著潜力。
关键词: Blaschke Unwinding;自适应傅里叶分解;信号压缩;心电图;非平稳信号;瞬时频率;信号处理
1. 引言
信号压缩是现代信息处理领域中的核心问题之一,其目标是在保证信号质量的前提下,最大限度地减少存储空间或传输带宽。随着科学技术的进步,各种复杂信号,如生物医学信号(ECG、EEG)、语音信号、地震信号等,日益成为研究和应用的热点。这些信号往往具有非平稳、多成分、瞬时变化显著等特点,对传统的基于傅里叶变换或小波变换的压缩方法提出了严峻挑战。
傅里叶分解(FFD)是一种经典的信号处理方法,它将信号分解为一系列不同频率和振幅的复指数基函数的线性组合。然而,FFD是基于全局固定基函数的,对于非平稳信号,其频谱会随着时间变化而扩散,导致能量在频域上分布不集中,信号表示不紧凑,从而影响压缩效率。虽然短时傅里叶变换(STFT)和小波变换等时频分析方法在一定程度上改善了对非平稳信号的处理能力,但它们仍然受限于窗口大小或基函数选择的限制,难以完美地适应信号的局部特性。
近年来,自适应分解方法引起了广泛关注。这些方法试图根据信号自身的特性,自适应地选择或构建基函数,以获得更稀疏、更紧凑的信号表示。希尔伯特-黄变换(HHT)是一种著名的自适应分解方法,它通过经验模态分解(EMD)将信号分解为一系列本征模态函数(IMF)。虽然HHT在处理某些非线性非平稳信号方面表现出色,但EMD存在模态混叠、端点效应等问题,且缺乏严格的数学理论基础。
Blaschke积在复分析领域具有重要的地位,它描述了单位圆内具有零点的解析函数的性质。Blaschke Unwinding(BU)过程是一种基于Blaschke积的信号分解技术,它能够将信号分解为一系列具有瞬时频率物理意义的成分。与传统的傅里叶分解不同,BU过程能够自适应地提取信号的瞬时频率信息,从而为非平稳信号的分析和表示提供了一种新的视角。
基于以上背景,本文提出了一种基于Blaschke Unwinding自适应傅里叶分解(BU-AFD)的新型信号压缩算法。该算法将BU过程与傅里叶分解相结合,旨在通过自适应地提取信号的瞬时频率信息,实现对非平稳信号的高效压缩。特别地,我们将重点研究该算法在ECG信号压缩中的应用。ECG信号作为一种典型的非平稳生物医学信号,具有P波、QRS波群、T波等复杂的形态结构,且其频率和幅度随时间变化显著,是检验新型信号压缩算法性能的理想对象。
本文的结构安排如下:第二节详细阐述BU-AFD算法的原理,包括Blaschke积、Blaschke Unwinding过程以及基于BU-AFD的信号分解过程。第三节介绍基于BU-AFD的信号压缩框架,包括信号分解、系数量化与编码以及信号重构过程。第四节探讨BU-AFD算法在ECG信号压缩中的应用,分析ECG信号的特性以及算法如何针对这些特性进行优化。第五节通过实验验证算法的性能,并与现有方法进行比较。第六节对全文进行总结,并展望未来的研究方向。
2. 基于Blaschke Unwinding的自适应傅里叶分解(BU-AFD)原理
BU-AFD算法的核心思想在于利用Blaschke Unwinding过程自适应地提取信号的瞬时频率,并在此基础上进行类傅里叶分解。
2.1 Blaschke积
2.2 Blaschke Unwinding 过程
Blaschke Unwinding过程通常从信号的瞬时频率提取开始。通过某种方法(例如基于零点的提取),我们可以找到信号中与瞬时频率相关的“零点”信息。这些零点信息可以用来构造Blaschke因子。具体过程可以概括为迭代地从信号中减去由提取的瞬时频率构造的 Blaschke 因子。每次减去 Blaschke 因子后,剩余信号的瞬时频率特性会发生改变,我们可以重复这个过程,直到剩余信号的能量足够小或满足某种停止条件。
Blaschke Unwinding的关键在于如何从信号中有效地提取这些瞬时频率信息并构造相应的 Blaschke 因子。目前已有多种基于零点、基于频率估计等方法的 Unwinding 技术。选择合适的 Unwinding 技术对 BU-AFD 的性能至关重要。
2.3 基于BU-AFD的信号分解
基于Blaschke Unwinding的自适应傅里叶分解(BU-AFD)将Blaschke Unwinding过程与类傅里叶分解相结合。其基本思想是:首先利用Blaschke Unwinding过程将信号分解为一系列具有自适应瞬时频率的成分。然后,对每个成分进行类傅里叶表示,即将其表示为一系列复指数函数的线性组合。
BU-AFD的分解过程可以概括如下:
3. 基于BU-AFD的信号压缩框架
基于BU-AFD的信号压缩算法主要包括以下三个阶段:信号分解、系数量化与编码以及信号重构。
3.1 信号分解
3.2 系数量化与编码
3.3 信号重构
4. BU-AFD在心电图ECG信号上的应用
心电图(ECG)信号是记录心脏电生理活动的重要生物医学信号。它具有以下主要特点:
- 非平稳性:
ECG信号的频率和幅度会随着时间、生理状态、病理变化等因素而变化。
- 周期性:
正常ECG信号具有大致的周期性,但每个周期的形态可能会有所不同。
- 多成分性:
ECG信号包含P波、QRS波群、T波等多个成分,这些成分的持续时间、幅度、形态各异。
- 噪声敏感:
ECG信号容易受到工频干扰、肌电干扰、基线漂移等噪声的影响。
传统基于FFT的ECG压缩方法,由于无法有效处理其非平稳性,往往在低压缩比下才能保证较好的重构精度。基于小波变换的方法虽然有所改进,但其基函数仍然是固定的,难以完全捕捉ECG信号复杂的局部特征。
BU-AFD算法的自适应性使其非常适合处理ECG信号。通过BU-AFD,我们可以将ECG信号分解为一系列具有自适应瞬时频率的成分,每个成分可能对应于ECG信号中的某个生理过程(例如心房去极化、心室去极化等)。
在将BU-AFD应用于ECG信号压缩时,需要考虑以下几个方面:
- BU-AFD的实现:
选择合适的Blaschke Unwinding算法来提取ECG信号的瞬时频率信息。例如,可以基于ECG信号的零点或瞬时频率估计来构造Blaschke因子。
- 分解次数的确定:
如何确定最佳的分解次数 N?可以通过分析每次分解后残余信号的能量下降情况来决定。当残余信号能量足够小,或者进一步分解带来的能量减少不显著时,可以停止分解。
- 成分的选择与排序:
通常,能量较大的成分对ECG信号的贡献越大。我们可以根据每个成分的能量进行排序,并选择保留前 N 个能量最大的成分进行压缩。
- 基函数的表示与编码:
ECG信号的相位函数可能比较复杂,需要选择合适的参数化方法或编码技术来高效表示。例如,可以对相位函数进行分段线性近似,或采用基于差分的编码方法。
- 量化策略:
对不同成分的系数可以采用不同的量化精度。例如,对能量较大的成分采用较高的量化精度,对能量较小的成分采用较低的量化精度。
- 噪声鲁棒性:
ECG信号容易受到噪声影响,噪声可能会影响瞬时频率的提取和Blaschke Unwinding过程。需要考虑算法对噪声的鲁棒性,并在必要时进行预处理或后处理。
- ECG信号的周期性利用:
虽然ECG信号是非平稳的,但其具有大致的周期性。在BU-AFD分解过程中,可以尝试利用这种周期性信息,例如,对不同周期内的信号进行类似的分解。
通过以上考虑,我们可以构建一个高效的基于BU-AFD的ECG信号压缩算法。该算法有望在保证高重构精度的同时,实现较高的压缩比。
5. 结论与展望
本文提出了一种基于Blaschke Unwinding自适应傅里叶分解(BU-AFD)的新型信号压缩算法,并探讨了其在ECG信号压缩中的应用。BU-AFD算法通过利用Blaschke Unwinding过程的自适应性,能够更有效地捕获非平稳信号的瞬时频率和振幅变化,从而实现更紧凑的信号表示。
初步分析表明,该算法有望克服传统傅里叶分解和一些现有自适应分解方法在处理ECG信号等复杂非平稳信号时存在的局限性。其自适应分解能力使其能够更好地适应ECG信号的复杂形态和时变特性,从而在保证信号质量的前提下,实现更高的压缩比。
然而,基于BU-AFD的信号压缩算法仍然面临一些挑战,例如:
- Blaschke Unwinding过程的实现复杂性:
高效且鲁棒的Blaschke Unwinding算法是实现BU-AFD的关键,需要进一步研究和优化。
- 基函数信息的有效编码:
如何在保证重构精度的前提下,最大限度地减少表示自适应基函数所需的数据量,是提高压缩比的关键。
- 对噪声的鲁棒性:
如何提高算法对ECG信号中常见噪声的鲁棒性,需要进一步研究去噪或抗噪声的策略。
- 计算效率的提升:
复杂的分解和编码过程可能会影响算法的实时性,需要进一步优化算法的计算效率。
未来的研究方向包括:
- 探索更高效和鲁棒的Blaschke Unwinding算法。
- 研究更优化的自适应基函数表示和编码方法。
- 将BU-AFD与其他信号处理技术(如机器学习)相结合,以进一步提升压缩性能和鲁棒性。
- 将该算法应用于其他类型的生物医学信号或其他非平稳信号的压缩。
- 对算法的理论性质进行更深入的研究,例如其完备性和稳定性。
⛳️ 运行结果
🔗 参考文献
[1] 孙苗.爆破地震波信号处理HHT改进算法及应用研究[D].中国地质大学,2021.
[2] 黄翔.地震信号高分辨率时频分析方法及应用研究[D].成都理工大学[2025-05-12].DOI:CNKI:CDMD:2.1017.216821.
[3] 应颖.基于快速傅里叶转换的CGMY指数Levy过程在期权定价过程中的应用[J].复旦大学, 2014.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇