✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
比例-积分-微分(PID)控制器因其结构简单、易于理解和实现,在工业自动化领域占据着主导地位。然而,PID控制器的性能很大程度上取决于其三个参数(比例增益Kp、积分时间Ti和微分时间Td)的整定。最优PID整定的目标是在满足系统稳定性要求的前提下,使系统响应达到最佳性能。衡量系统性能的关键在于选用合适的性能指标。本文深入探讨了四种常用的时域性能指标:误差平方积分(ISE)、误差绝对值积分(IAE)、误差乘以时间平方的积分(ITSE)以及误差绝对值乘以时间的积分(ITAE)。我们将详细分析每种指标的特点、优缺点及其在PID整定中的应用。此外,文章还将阐述稳定性裕量(包括增益裕度和相位裕度)在最优PID整定中的重要性,以及如何通过优化性能指标来平衡性能与稳定性。最后,将概述几种常见的PID整定方法,并强调性能指标优化在实现最佳控制效果中的核心作用。
关键词: PID控制器;最优整定;性能指标;ISE;IAE;ITSE;ITAE;稳定性裕量;增益裕度;相位裕度
引言
在现代工业生产中,对各种过程变量(如温度、压力、流量、液位等)的精确控制是保证产品质量、提高生产效率和降低能耗的关键。PID控制器作为一种经典的控制策略,凭借其鲁棒性和有效性,在几乎所有工业领域得到了广泛应用。PID控制器基于控制偏差(设定值与测量值之差)来计算控制输出,通过比例、积分和微分三个部分的组合作用,对被控对象进行控制。其数学表达式通常为:
u(t)=Kp[e(t)+1Ti∫0te(τ)dτ+Tdde(t)dt]
1. PID性能指标及其在最优整定中的作用
性能指标是衡量控制系统响应质量的定量化标准。对于PID控制系统,常用的时域性能指标可以从多个角度进行评估,例如:
- 响应速度:
系统达到稳态值所需的时间,通常用上升时间或调节时间来衡量。
- 超调量:
系统响应的最大峰值与稳态值之差的百分比。
- 稳态误差:
系统在达到稳态后,输出与设定值之间的残余误差。
- 振荡程度:
系统响应过程中出现的振荡次数和幅度。
- 鲁棒性:
系统在存在模型不确定性或外部扰动时保持良好性能的能力。
在最优PID整定中,性能指标通常被转化为一个需要最小化的目标函数。通过优化算法(如遗传算法、粒子群算法、模拟退火算法等)或者解析方法,寻找能够使该目标函数达到最小值的PID参数组合。不同的性能指标强调系统响应的不同方面,因此,选择合适的性能指标是实现特定控制目标的先决条件。
2. 常用的时域性能指标
本节将详细讨论四种广泛应用于PID整定的时域性能指标,它们都基于控制误差e(t)e(t)随时间变化的积分形式:
2.1 误差平方积分 (Integral of Squared Error, ISE)
ISE的定义为:
ISE=∫0∞e2(t)dt
- 优点:
对大误差敏感,能够有效抑制较大的超调和振荡。在某些理论分析中具有较好的数学性质。
- 缺点:
对持续存在的小误差相对不敏感,可能导致系统存在较长的衰减过程。对于存在高频噪声的系统,平方运算会放大噪声的影响。
在实际应用中,最小化ISE常常能够得到具有较小超调量的系统响应,但调节时间可能相对较长。
2.2 误差绝对值积分 (Integral of Absolute Error, IAE)
IAE的定义为:
IAE=∫0∞∣e(t)∣dt
- 优点:
对所有误差都敏感,能够有效减小系统的整体误差。计算简单,对噪声的鲁棒性相对较好(相比于ISE)。
- 缺点:
对超调的惩罚不如ISE严厉,可能导致系统存在一定的超调。
最小化IAE通常能够得到具有较快响应速度和较小稳态误差的系统,但超调量可能比基于ISE优化的系统略大。
2.3 误差乘以时间平方的积分 (Integral of Time multiplied by Squared Error, ITSE)
ITSE的定义为:
ITSE=∫0∞t⋅e2(t)dt
- 优点:
能够有效抑制系统在响应后期出现的误差,有助于减小调节时间和振荡。对于存在较长振荡衰减过程的系统尤其有效。
- 缺点:
对系统早期的大误差相对不敏感,可能导致系统存在较大的初始超调。对噪声依然敏感,且时间权重的引入增加了计算的复杂性。
最小化ITSE通常能够得到具有较短调节时间和较好阻尼特性的系统响应,但可能牺牲一定的初始响应速度或允许较大的初始超调。
2.4 误差绝对值乘以时间的积分 (Integral of Time multiplied by Absolute Error, ITAE)
ITAE的定义为:
ITAE=∫0∞t⋅∣e(t)∣dt
- 优点:
综合了IAE和ITSE的优点,能够同时关注系统的快速性和准确性。对后期误差的强调有助于减小调节时间。对早期误差的相对容忍使得系统不至于过于激进。
- 缺点:
计算相对复杂。
在实践中,ITAE通常被认为是一种综合性能较好的性能指标,它倾向于产生具有较小超调、较短调节时间和较小稳态误差的系统响应。许多研究和应用都表明,基于ITAE优化的PID控制器能够获得令人满意的控制效果。
3. 性能指标的选择与权衡
选择哪种性能指标取决于具体的控制目标和对系统响应的要求。
-
如果系统对超调非常敏感,例如在某些液体灌装或精密定位系统中,应优先考虑最小化ISE。
-
如果更关注系统整体的误差累积,并希望快速达到并保持稳态,可以优先考虑最小化IAE。
-
如果系统的主要问题在于响应过程中的长时间振荡衰减,或者希望显著缩短调节时间,ITSE或ITAE可能是更好的选择。
-
在许多通用控制应用中,ITAE因其综合性能较好而被广泛采用。
需要注意的是,不同的性能指标往往存在一定的冲突。例如,追求极小的超调(倾向于最小化ISE)可能导致较长的调节时间,而追求极快的响应速度(可能倾向于最小化IAE或ITAE)则可能带来较大的超调。因此,最优PID整定往往是一个多目标优化的过程,需要在不同的性能指标之间进行权衡。
在实际应用中,有时会采用多个性能指标的加权组合作为目标函数,以更全面地评价和优化系统性能。例如,可以定义一个目标函数为:
J=w1⋅ISE+w2⋅ITAE
4. 稳定性裕量在最优PID整定中的重要性
虽然性能指标衡量的是系统的响应特性,但控制系统的首要要求是稳定性。一个不稳定的系统即使具有再好的响应指标也毫无意义。因此,在进行最优PID整定时,必须同时考虑系统的稳定性。
稳定性裕量是衡量系统相对稳定性的指标,它反映了系统在参数或模型不确定性下保持稳定的能力。常用的稳定性裕量包括:
4.1 增益裕度 (Gain Margin, GM)
增益裕度定义为当相位角达到-180°时,开环传递函数增益的倒数。它衡量的是在相位滞后达到180°时,系统能够容忍的额外增益。通常以分贝(dB)表示:
GMdB=20log10(1∣G(jω)∣)
4.2 相位裕度 (Phase Margin, PM)
在最优PID整定过程中,以性能指标最小化为目标函数进行优化时,必须将稳定性要求作为约束条件。例如,可以将增益裕度大于某个最小值和相位裕度大于某个最小值作为优化算法的约束。一个典型的约束可能是要求增益裕度大于6 dB且相位裕度大于30°至45°(具体数值取决于应用)。
仅仅追求性能指标的最优值而不考虑稳定性裕量,往往会得到激进的PID参数,导致系统接近不稳定边界,对外部扰动和模型不确定性变得非常敏感。一个鲁棒的控制系统不仅需要良好的性能,还需要足够的稳定性裕量来应对实际工程中遇到的各种不确定性。
因此,最优PID整定的真正含义是在满足必要的稳定性裕量要求的前提下,使得选定的性能指标达到最优。这通常是一个在性能和鲁棒性之间进行权衡的过程。提高性能往往意味着降低稳定性裕量,反之亦然。优秀的PID整定方法应该能够找到一个平衡点,在保证系统稳定可靠运行的同时,最大程度地提升控制性能。
5. 基于性能指标优化的PID整定方法
基于性能指标优化的PID整定方法通常采用以下步骤:
在许多实际应用中,由于被控对象可能存在非线性、时变性和不确定性,基于精确模型的解析或数值优化方法可能效果不佳。此时,基于仿真的智能优化算法或在线自整定方法(如自适应PID、模糊PID、神经网络PID等)往往更具优势。然而,即使采用这些先进方法,性能指标和稳定性裕量仍然是评价和指导整定的核心依据。
6. 结论
最优PID整定是实现高性能工业控制的关键环节。本文详细介绍了四种常用的时域性能指标:ISE、IAE、ITSE和ITAE,并分析了它们各自的特点、优缺点以及在PID整定中的适用性。这些性能指标为量化评估控制系统的响应质量提供了客观依据。同时,文章强调了稳定性裕量(增益裕度和相位裕度)在最优PID整定中的不可或缺性。一个优秀的最优整定方案必须在追求卓越性能的同时,确保系统具备足够的鲁棒性以应对实际运行环境中的不确定性。
选择合适的性能指标、建立准确的系统模型、运用有效的优化算法,并在整个过程中始终关注系统的稳定性裕量,是实现最优PID整定的基本要素。随着计算能力的提升和优化算法的发展,基于性能指标优化的PID整定方法将在工业自动化领域发挥越来越重要的作用,为实现更精确、高效和鲁棒的控制提供有力支撑。未来的研究方向可以包括探索新的性能指标、开发更高效的优化算法以及研究在强不确定性和时变环境下的自适应最优PID整定技术。
⛳️ 运行结果
🔗 参考文献
[1] 张美娜,林相泽,丁永前,等.基于性能指标的农用车辆路径跟踪控制器设计[J].农业工程学报, 2012, 28(9):7.DOI:10.3969/j.issn.1002-6819.2012.09.007.
[2] 郑国良,王杰.交流伺服系统无超调最优PID控制器设计[J].微电机, 2013, 46(2):4.DOI:10.3969/j.issn.1001-6848.2013.02.008.
[3] 汤伟,胡祥满.基于模拟退火算法的PID参数优化研究[J].组合机床与自动化加工技术, 2018(4):6.DOI:10.13462/j.cnki.mmtamt.2018.04.023.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇