✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。
🍎 往期回顾关注个人主页:Matlab科研工作室
🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。
🔥 内容介绍
图像配准作为医学图像分析、计算机视觉和遥感等领域中的核心技术,旨在找到一个最优的空间变换,使得两幅或多幅图像能够对齐。传统的图像配准方法多集中于单模态图像,然而,在实际应用中,我们经常需要对来自不同成像设备或采集协议的多模态图像进行配准,例如将MRI图像配准到CT图像,或将PET图像配准到MRI图像。多模态图像配准面临着不同模态之间强度或像素值没有直接线性关系的挑战,这使得基于强度相似度的传统配准方法往往失效。
本文旨在探讨基于Demon流算法的多模态非刚性2D和3D图像配准方法,并着重阐述其在扩展模态转换研究中的潜力。Demon算法以其直观的物理模型和相对高效的计算性能,在刚性、仿射和非刚性图像配准中得到了广泛应用。通过对Demon流方程的适当修改和相似性度量方法的选择,我们可以将其应用于多模态图像配准,从而为跨模态图像分析和处理提供新的工具。
1. Demon算法及其在图像配准中的原理
Demon算法最初由Jean-Philippe Thirion提出,其核心思想是将图像像素视为“小精灵”(demons),它们根据图像梯度信息产生的“力”进行运动,从而驱动图像发生形变。具体而言,Demon算法通过计算图像之间的局部形变场,迭代地更新形变,直到图像达到最优对齐。
在实际应用中,为了保证形变的平滑性,通常会引入正则化项,例如扩散方程,对形变场进行平滑处理。这使得形变更加连续,避免出现不合理的跳变。
2. 多模态图像配准的挑战与机遇
正如前文所述,多模态图像配准面临的核心挑战在于不同模态图像之间强度信息的非线性关系。例如,MRI图像反映的是组织对射频脉冲的响应,而CT图像反映的是组织对X射线的吸收。这两种物理过程完全不同,导致同一解剖结构在不同模态图像中呈现出不同的强度分布。基于简单的像素强度差的相似性度量,如均方差(Mean Squared Error, MSE),在多模态配准中往往失效。
然而,多模态图像配准也带来了独特的机遇。不同模态图像提供了互补的信息。例如,CT图像对于骨骼结构非常清晰,而MRI图像对于软组织具有更高的对比度。通过将不同模态图像进行配准,我们可以整合这些互补信息,从而获得更全面的图像理解,为疾病诊断、治疗计划和手术导航等提供更精确的支持。
3. 基于Demon算法的多模态非刚性配准
为了将Demon算法应用于多模态图像配准,需要对标准的强度相似度进行替换。核心思想是寻找一种能够捕捉不同模态图像之间内在关系或相似性的度量。以下是一些常用的多模态相似性度量方法及其在Demon算法中的应用:
- 互信息 (Mutual Information, MI):
互信息度量了两个随机变量之间的相互依赖程度。在图像配准中,可以将图像的像素强度视为随机变量,通过最大化两幅图像之间的互信息来寻找最优的形变。互信息不受强度绝对值的影响,而是关注其联合概率分布。因此,互信息是多模态图像配准中最常用的相似性度量之一。将MI引入Demon算法,可以将形变流方程修改为基于MI梯度的形式,驱动图像向着互信息最大化的方向形变。
- 归一化互信息 (Normalized Mutual Information, NMI):
NMI是MI的归一化版本,通常用于处理不同图像尺寸和分辨率的情况。
- 联合熵 (Joint Entropy):
联合熵度量了两个随机变量的联合不确定性。最小化联合熵也可以用于图像配准。
- 相关性比 (Correlation Ratio):
相关性比度量了两个变量之间的非线性相关性,适用于一幅图像是另一幅图像的单值函数的情况,尽管在实际多模态配准中应用较少。
- 基于特征的相似性度量:
提取图像中的特征,如边缘、角点或纹理信息,然后基于这些特征的匹配来计算相似性。这种方法对强度变化不敏感,但特征提取和匹配的鲁棒性对配准结果有很大影响。
- 学习型相似性度量:
利用深度学习模型学习不同模态图像之间的非线性映射关系,从而得到更鲁棒的相似性度量。例如,可以训练一个神经网络,输入两幅图像的局部块,输出一个相似性得分。
将上述多模态相似性度量与Demon算法结合,其基本框架如下:
- 初始化形变场:
通常初始化为零形变,即身份变换。
- 计算相似性度量:
计算当前形变下的浮动图像与目标图像之间的多模态相似性度量。
- 计算形变流:
根据选择的多模态相似性度量,计算驱动图像形变的“力”或速度场。例如,基于MI的Demon算法会计算MI相对于形变的梯度,以此指导形变的方向。
- 正则化形变场:
应用平滑或扩散等正则化方法,确保形变场的平滑性和连续性。
- 更新形变:
根据计算出的形变流和时间步长更新总的形变场。
- 应用形变:
将当前的形变应用于原始浮动图像。
- 迭代:
重复步骤2-6,直到达到收敛条件,例如形变场变化足够小或达到最大迭代次数。
4. 2D和3D多模态Demon配准的实现考虑
将上述原理应用于2D和3D图像配准时,需要考虑以下实现细节:
- 图像插值:
在形变应用过程中,需要对浮动图像进行插值,以获得非整数坐标位置的像素值。常用的插值方法包括最近邻插值、双线性插值(2D)和三线性插值(3D)。
- 梯度计算:
计算图像梯度时,可以采用有限差分法或其他更高级的梯度估计算法。
- 正则化参数:
正则化参数的选择对配准结果至关重要。过小的正则化可能导致不平滑的形变,而过大的正则化可能限制形变的自由度。通常需要根据具体应用和数据进行参数调整。
- 优化算法:
除了基本的迭代更新,还可以引入更高级的优化算法,如梯度下降或牛顿法,来加速收敛和提高配准精度。
- 计算效率:
3D图像配准的计算量远大于2D图像。需要考虑优化算法和并行计算等技术来提高效率。
5. 多模态Demon配准在扩展模态转换研究中的潜力
多模态非刚性Demon算法图像配准不仅能够实现跨模态图像的对齐,更重要的是,它为扩展模态转换研究提供了重要的基础和工具。模态转换,也称为图像合成或跨模态图像生成,旨在从一种模态的图像生成另一种模态的图像。传统的模态转换方法通常依赖于成对的已配准图像数据进行训练。然而,获取大量高质量的配对多模态图像数据往往具有挑战性。
多模态Demon配准可以为模态转换研究带来以下益处:
- 生成伪配对数据:
对于未配准的多模态图像对,我们可以利用多模态Demon配准将其对齐,从而生成“伪配对”数据。这些伪配对数据可以用于训练模态转换模型,尤其是在缺乏真实配对数据的情况下。虽然伪配对数据的质量可能不如真实配对数据,但它仍然可以为模型提供有用的训练信号,尤其是在数据量有限的情况下。
- 辅助模态转换模型的训练:
在训练模态转换模型时,可以将多模态Demon配准作为辅助手段。例如,可以在模态转换模型的损失函数中加入配准误差项,鼓励生成的图像与目标模态图像在空间上对齐。
- 评估模态转换模型的生成效果:
模态转换模型生成图像后,可以使用多模态Demon配准来评估生成图像与真实目标模态图像之间的空间一致性。配准误差可以作为评估模态转换模型性能的一个指标。
- 指导模态转换模型的结构设计:
通过分析多模态Demon配准过程中得到的形变场,可以了解不同模态之间解剖结构的变化规律,从而为模态转换模型的网络结构设计提供启示。例如,如果配准过程中存在显著的局部形变,则模态转换模型可能需要更强的局部建模能力。
- 实现更精确的图像分析:
结合模态转换和多模态配准,可以实现更精确的图像分析任务。例如,先将图像进行模态转换,再进行配准,或者先进行配准,再进行模态转换,可以根据具体任务需求选择合适的流程。最终目标是获得更精确的对齐和更可靠的跨模态信息整合,为下游分析任务(如分割、分类等)提供更好的输入。
6. 未来展望与挑战
尽管多模态非刚性Demon算法在图像配准和模态转换研究中展现出巨大的潜力,但仍面临一些挑战和未来的研究方向:
- 计算效率:
对于大规模3D图像,尤其是高分辨率图像,Demon算法的计算量仍然较大。未来的研究可以关注如何提高算法的效率,例如通过并行计算、多分辨率策略或基于学习的加速方法。
- 相似性度量的鲁棒性:
选择合适的相似性度量对于多模态配准至关重要。尤其是在面对复杂病理或图像伪影时,如何设计更鲁棒的相似性度量是一个重要的研究方向。
- 正则化策略的优化:
如何在保持形变灵活性的同时确保其平滑性和合理性,是正则化策略的关键。自适应正则化或基于学习的正则化方法可能带来更好的效果。
- 与深度学习的结合:
将Demon算法与深度学习模型更紧密地结合,利用深度学习强大的特征提取和非线性建模能力,有望进一步提升多模态配准的精度和鲁棒性。例如,可以利用深度学习模型预测初始形变场,或学习更优化的相似性度量和正则化策略。
- 验证和评估:
如何对多模态配准结果进行客观和定量的评估仍然是一个挑战。需要开发更全面的评估指标和更可靠的验证数据集。
结论
基于Demon流算法的多模态非刚性2D和3D图像配准为解决跨模态图像对齐问题提供了有效的途径。通过选择和应用合适的相似性度量,Demon算法能够适应不同模态图像之间的强度差异。更重要的是,多模态Demon配准在扩展模态转换研究中扮演着重要角色,它能够为模态转换模型的训练、评估和应用提供关键的支持,促进跨模态图像分析和处理技术的发展。未来的研究应继续探索提高算法效率、鲁棒性和精度的方法,并进一步深化Demon算法与深度学习的结合,从而更好地应对复杂的多模态图像数据,为医学图像分析等领域带来更多突破。
⛳️ 运行结果
🔗 参考文献
[1] 郝培博,陈震,江少锋,等.基于Demons算法的多模态医学图像非刚性配准研究[J].生物医学工程学杂志, 2014, 31(1):5.DOI:CNKI:SUN:SWGC.0.2014-01-032.
[2] 郝培博.基于Demons算法的2D、3D多模态医学图像非刚性配准研究[D].南昌航空大学[2025-05-22].DOI:CNKI:CDMD:2.1014.006573.
[3] 徐密,诸葛斌,袁非牛,等.2D/3D多模态医学图像配准算法研究[J].电信科学, 2024, 40(3):75-88.DOI:10.11959/j.issn.1000-0801.2024070.
📣 部分代码
🎈 部分理论引用网络文献,若有侵权联系博主删除
👇 关注我领取海量matlab电子书和数学建模资料
🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:
🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维
2.1 bp时序、回归预测和分类
2.2 ENS声神经网络时序、回归预测和分类
2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类
2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类
2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类
2.7 ELMAN递归神经网络时序、回归\预测和分类
2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类
2.9 RBF径向基神经网络时序、回归预测和分类
2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP
👇