【多式联运】基于AFO算法、GA和PSO算法求解不确定多式联运路径优化问题,同时和MATLAB自带的全局优化搜索器进行对比附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

随着全球贸易的日益繁荣和供应链复杂性的不断提升,多式联运(Multimodal Transport)作为一种高效、灵活的货物运输方式,其重要性日益凸显。多式联运是指在货物运输过程中,至少使用两种或两种以上不同的运输方式(如海运、铁路、公路、航空、内河运输等),通过一次合同、一次支付,由同一承运人或联合承运人负责完成全程运输。然而,现实中的多式联运环境常常面临诸多不确定性因素,例如运输时间、成本、碳排放等都可能受到天气、交通状况、政策变化、设备故障等多种因素的影响,这些不确定性显著增加了多式联运路径规划的难度。因此,如何在不确定环境下求解最优或次优的多式联运路径优化问题,成为当前物流与运输领域的研究热点。

传统的多式联运路径优化模型通常基于确定性假设,即认为所有运输参数都是已知且固定的。然而,在不确定环境中,这种确定性模型往往难以捕捉现实世界的复杂性,得到的路径方案可能在实际执行中面临较大的风险和偏差。为了应对不确定性,研究人员提出了多种方法,包括鲁棒优化、随机规划、模糊规划以及基于智能优化算法的方法。智能优化算法因其较强的全局搜索能力和适应性,在处理复杂组合优化问题方面展现出独特的优势,特别是在处理具有非线性、离散性和不确定性的问题时。

本文聚焦于不确定多式联运路径优化问题,旨在探索和比较几种主流的智能优化算法在求解该问题时的性能。具体而言,本文将运用人工鱼群算法(Artificial Fish Swarm Algorithm, AFO)、遗传算法(Genetic Algorithm, GA)和粒子群优化算法(Particle Swarm Optimization, PSO)这三种经典的群体智能算法来求解不确定多式联运路径优化模型。同时,为了提供一个基准和参照,本文还将将这些算法的求解结果与MATLAB自带的全局优化搜索器(Global Optimization Toolbox)进行对比。通过对不同算法在收敛速度、解的质量以及对不确定性的处理能力等方面的比较分析,以期为不确定多式联运路径优化问题的求解提供理论和实践指导。

不确定多式联运路径优化问题建模

图片

基于上述考虑,我们可以构建一个多目标优化模型来求解不确定多式联运路径优化问题。常见的优化目标包括最小化总运输成本、最小化总运输时间、最小化碳排放、最大化服务水平等。在不确定环境下,这些目标函数本身也具有不确定性。为了衡量和比较不同路径方案,可以使用期望值、方差、风险度等指标来评估不确定目标。本文以最小化总运输时间和最小化总运输成本为例,构建一个多目标不确定优化模型。

图片

例如,我们可以考虑最小化总运输时间的期望值和方差的线性组合,或者最小化总运输成本在某个置信水平下的上界。为了简化模型同时突出算法的比较,本文将采用最小化总运输时间期望值和最小化总运输成本期望值作为优化目标,并将其结合成一个单目标函数,例如通过加权的方式:

图片

约束条件主要包括:

  1. 路径必须从起始节点 ss 到目标节点 dd。

  2. 路径必须是连通的。

  3. 节点之间的转换需要满足特定的规则(例如,港口才能进行海运和陆运的转换)。

  4. 其他可能的约束,例如容量约束、时间窗约束等(本文暂不考虑)。

因此,不确定多式联运路径优化问题可以建模为一个复杂的组合优化问题,需要在离散的网络结构中搜索最优路径,同时处理参数的不确定性。

智能优化算法在不确定多式联运路径优化问题中的应用

智能优化算法,特别是群体智能算法,因其模仿自然界生物群体行为而具有的分布式并行搜索能力,在解决非线性、多峰值、高维度的优化问题方面表现出色。本文将重点探讨AFO算法、GA和PSO算法在求解上述不确定多式联运路径优化问题中的应用。

1. 人工鱼群算法 (AFO)

人工鱼群算法是一种模拟鱼类觅食、聚群和追尾等行为的优化算法。AFO算法通过模拟鱼群的局部寻优和全局寻优行为,最终达到全局最优解。在求解不确定多式联运路径优化问题时,可以将每条鱼表示一个可能的路径方案。鱼的状态可以由路径经过的节点序列来编码。

  • 觅食行为 (Prey Behavior):

     模拟鱼在局部区域随机搜索食物。在路径优化中,可以随机修改路径中的某个节点或边,生成一个新的路径方案,并评估其目标函数值。如果新方案优于当前方案,则更新。

  • 聚群行为 (Swarm Behavior):

     模拟鱼向视野内的其他鱼游动,并保持一定的距离。在路径优化中,可以计算当前路径与其他路径之间的相似度,并尝试向更优的路径方向调整自己的方案,避免陷入局部最优。

  • 追尾行为 (Follow Behavior):

     模拟鱼向最优鱼游动。在路径优化中,每条鱼记录当前最优路径,并尝试通过修改自身路径向最优路径靠近。

  • 随机行为 (Random Behavior):

     模拟鱼在找不到食物或同伴时进行的随机游动,有助于跳出局部最优。

AFO算法的优势在于其较强的全局搜索能力和对初始解不敏感。然而,参数设置对算法性能影响较大,且收敛速度可能相对较慢。在处理不确定性时,AFO算法可以在评估目标函数时直接使用期望值,或者通过多次采样来估计目标函数的分布,从而指导鱼群的移动方向。

2. 遗传算法 (GA)

遗传算法是一种模拟生物进化过程的随机搜索算法,包括选择、交叉和变异等操作。在求解路径优化问题中,可以将每条染色体表示一个路径方案。染色体的编码方式可以多样化,例如基于节点的顺序编码或者基于边的二进制编码。

  • 编码 (Encoding):

     将多式联运路径转化为遗传算法可以处理的染色体。例如,可以使用一个节点序列来表示路径,或者使用一个二进制向量表示每条边是否被选择。

  • 初始化种群 (Population Initialization):

     随机生成一组初始路径方案作为种群。

  • 适应度函数 (Fitness Function):

     根据路径方案的目标函数值(如最小化期望总时间和成本),定义适应度函数。适应度值越高,表示路径方案越优。在不确定环境下,适应度函数需要考虑目标函数的不确定性。

  • 选择 (Selection):

     根据适应度值选择优秀的个体进入下一代。常用的选择方法包括轮盘赌选择、锦标赛选择等。

  • 交叉 (Crossover):

     模拟生物的基因交叉,将两个父代个体的部分基因进行交换,生成新的子代个体。在路径编码中,可以设计路径交叉操作,例如部分匹配交叉(PMX)或者有序交叉(OX)。

  • 变异 (Mutation):

     模拟生物基因变异,随机改变个体基因的某个位置。在路径编码中,可以随机改变路径中的某个节点或者边的选择。

遗传算法具有较强的全局搜索能力,能够有效地探索解空间。然而,对于大规模问题,遗传算法的计算量可能较大,且容易陷入局部最优。在处理不确定性时,GA可以通过在适应度函数中融入不确定性度量(如期望值、方差)或者采用基于仿真的遗传算法来评估不确定目标。

3. 粒子群优化算法 (PSO)

粒子群优化算法是一种模拟鸟群或鱼群等群体觅食行为的优化算法。在PSO算法中,每个粒子代表一个潜在的解,粒子通过跟踪个体最优解和全局最优解来更新自己的位置和速度。在求解路径优化问题中,可以将每个粒子表示一个路径方案。由于路径是离散的组合结构,需要对标准的PSO算法进行改进,例如使用离散PSO或者引入路径编码。

  • 粒子表示 (Particle Representation):

     每个粒子代表一个多式联运路径。可以使用基于顺序的编码或者其他适合离散空间的编码方式。

  • 速度和位置更新 (Velocity and Position Update):

     粒子的速度和位置根据个体最优解 (pbest) 和全局最优解 (gbest) 进行更新。对于离散的路径空间,需要定义合适的“速度”和“位置”更新操作,例如通过交换节点、插入节点等方式来改变路径结构。

  • 个体最优解 (pbest):

     每个粒子记录自己搜索到的最优路径方案。

  • 全局最优解 (gbest):

     整个粒子群搜索到的最优路径方案。

PSO算法具有实现简单、收敛速度快等优点。然而,标准PSO算法容易陷入局部最优,特别是在处理复杂的多模态问题时。为了处理不确定性,可以在目标函数评估时考虑不确定性,或者采用基于仿真的PSO算法。

与MATLAB自带全局优化搜索器的对比

MATLAB的全局优化工具箱 (Global Optimization Toolbox) 提供了一系列用于求解全局优化问题的函数,包括遗传算法 (ga)、粒子群优化 (particleswarm) 等内置函数,以及模拟退火 (simulannealbnd)、多启动本地搜索 (multistart) 等其他全局优化算法。与我们自行实现的AFO、GA和PSO算法相比,MATLAB自带的函数通常经过了高度优化和测试,提供了丰富的选项和参数设置,并且能够更好地集成到MATLAB的计算环境中。

在对比研究中,我们将使用MATLAB自带的遗传算法和粒子群优化函数来求解相同的不确定多式联运路径优化问题,并将它们与我们自行实现的AFO、GA、PSO算法的性能进行比较。对比的维度包括:

  • 解的质量 (Solution Quality):

     比较不同算法找到的最优路径方案的目标函数值。

  • 收敛速度 (Convergence Speed):

     比较不同算法达到收敛状态所需的迭代次数或计算时间。

  • 鲁棒性 (Robustness):

     评估算法对不同问题实例和不确定性程度的适应性。

  • 计算效率 (Computational Efficiency):

     比较算法的运行时间。

需要注意的是,MATLAB自带的遗传算法和粒子群优化函数是针对一般的函数优化问题设计的,在应用于离散的多式联运路径优化问题时,需要进行适当的调整和编码。同时,对于不确定性问题的处理,可能需要通过外部函数或者自定义适应度函数来整合不确定性模型。

实验设计与结果分析

为了进行有效的比较研究,我们需要设计一套标准的实验方案。首先,需要构建一组具有不同规模和复杂度的多式联运网络实例。这些实例应该包含不同的节点数量、边的数量、运输方式以及不确定参数的范围。其次,需要设定统一的实验环境,包括硬件配置、软件版本以及算法的参数设置。对于每个算法,都需要进行多次独立运行,以减小随机性带来的影响。

在实验过程中,我们将记录每个算法在不同问题实例上的运行结果,包括找到的最优解、收敛曲线、运行时间等。然后,我们将对这些结果进行统计分析,例如计算平均最优解、标准差、平均运行时间等,并进行显著性检验。

通过对实验结果的详细分析,我们可以得出关于不同算法在求解不确定多式联运路径优化问题方面的性能结论。例如,AFO算法可能在全局搜索能力方面表现较好,但收敛速度可能较慢;GA算法可能在探索解空间方面具有优势,但容易陷入局部最优;PSO算法可能收敛速度较快,但在处理复杂问题时性能可能受到限制。与MATLAB自带的全局优化搜索器相比,自行实现的算法可能在某些方面具有一定的灵活性和可定制性,但也可能在优化程度和计算效率方面存在差距。

挑战与未来展望

尽管智能优化算法在求解不确定多式联运路径优化问题方面取得了显著进展,但仍面临一些挑战:

  • 不确定性建模的复杂性:

     现实世界中的不确定性可能更加复杂,如何更准确地建模和处理高维、相关的不确定性是一个持续的研究方向。

  • 大规模问题的计算效率:

     随着网络规模的增大,智能优化算法的计算量呈指数级增长,如何提高算法的计算效率是亟待解决的问题。

  • 多目标优化:

     实际的多式联运路径优化问题通常涉及多个相互冲突的目标,如何有效地求解不确定多目标优化问题是一个重要研究方向。

  • 算法参数的自适应调整:

     大多数智能优化算法的性能对参数设置敏感,如何实现参数的自适应调整以提高算法的鲁棒性和性能是一个挑战。

  • 算法的理论分析:

     目前对智能优化算法在不确定环境下的收敛性和性能保证的理论分析相对较少。

未来的研究可以从以下几个方面展开:

  • 混合智能优化算法:

     结合不同智能优化算法的优势,开发混合算法来提高求解性能。

  • 基于学习的优化算法:

     将机器学习技术与智能优化算法相结合,通过学习历史数据或问题特征来指导算法的搜索过程。

  • 并行计算和分布式优化:

     利用并行计算和分布式计算技术来加速算法的运行,处理更大规模的问题。

  • 考虑更复杂的不确定性模型:

     研究基于模糊集、粗糙集、云模型等更复杂的不确定性建模方法。

  • 算法在实际多式联运场景中的应用和验证:

     将算法应用于实际的多式联运运营数据,验证算法的有效性和实用性。

结论

本文对基于AFO算法、GA和PSO算法求解不确定多式联运路径优化问题进行了初步探讨,并提出了与MATLAB自带的全局优化搜索器进行对比研究的思路。不确定多式联运路径优化是一个具有重要理论和实践意义的问题。智能优化算法为解决这类复杂问题提供了有效的手段。通过比较不同算法的性能,我们可以更好地理解它们的优缺点,并为实际应用选择合适的算法。未来的研究应继续深入探索更有效的不确定性处理方法、提高算法的计算效率,并将研究成果应用于实际的多式联运系统中,为提高物流效率和降低运输成本做出贡献。

⛳️ 运行结果

图片

图片

🔗 参考文献

[1] 康凯,牛海姣,朱越杰,等.基于粒子群蚁群算法求解多式联运中运输方式与运输路径集成优化问题[J].物流工程与管理, 2009(10):5.DOI:10.3969/j.issn.1674-4993.2009.10.026.

[2] 任建伟,孟祥冬,陈春花,等.多式联运网络中的托盘共用调度方法[J].西南交通大学学报, 2020, 55(3):8.DOI:10.3969/j.issn.0258-2724.20190340.

[3] 李鹏远.基于机器学习的多式联运风险评估方法研究[D].长安大学,2023.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值