模拟框图的表示

本文介绍了如何通过微分方程建立LTI系统的数学模型,以RLC电路为例,并探讨了相似系统的概念。同时,通过模拟框图和中间变量法,展示了如何将微分方程转化为直观的图形表示,特别适用于处理输入带微分的常微分方程.

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

微分方程的建立

目的:为建立LTI系统的数学模型,需要列写微分方程式。

以RLC电路为例:

6dceee6d323942e5b40d60d5ce810ed6.jpg

 以Us为输入,Uc为输入,则可以得出以下微分方程式:

LC\frac{\partial^2Uc }{\partial t^2}+RC\frac{\partial Uc}{\partial x}+Uc=Us

抽去物理意义后,得到一般的常微分线性方程:

a_{2}\frac{\partial^2 y(t)}{\partial t^2}+a_{1}\frac{\partial y(t)}{\partial t}+a_{0}y(t)=f(t)


相似系统

指性质不同的两个物理系统,它们的数学模型却能一一对应(或者说由这两个系统得出的微分方程形式完全相同),则称这两个系统互为相似系统。

用微分方程不仅可以建立描述电路、机械等工程系统的数学模型,而且还可以用于构建生物系统、经济系统、社会系统等各种科学领域。


模拟框图表示

模拟框图:指将抽象的微分方程用基本部件的相互连接所表达出的直观的图。简称:框图

基本公式a_{2}\frac{\partial^2 y(t)}{\partial t^2}+a_{1}\frac{\partial y(t)}{\partial t}+a_{0}y(t)=f(t)

或者写为:a_{2}y^{''}(t)+a_{1}y^{'}(t)+a_{0}y(t)=f(t)

基本运算:数乘、微分、积分、相加

基本部件:加法器、数乘器、积分器(通常不用微分器,抗干扰性差、不稳定)


微分方程转化为框图

中间变量法

设激励f(t)产生x(t),x(t)产生响应y(t)。

设f(t)=关于x(t)的一个函数式,其函数式与原式中y(t)函数式相同;y(t)=关于x(t)的另一个函数式,其函数式与原式中f(t)函数式相同。

证明:

将原微分方程记作  g_{1}\left \{ y(t) \right \}=g_{2}\left \{ f(t) \right \}  的形式

令f(t)线性变换为g_{1}\left [ f(t) \right ],由LTI系统的线性规则可得:g_{2}\left \{ g_{1}\left [ f(t) \right ] \right \}=g_{1}\left \{g _{1}\left [ y(t) \right ] \right \}

g_{1}\left \{ y(t) \right \}=g_{2}\left \{ f(t) \right \},可得:g_{1}\left \{ g_{2} \left [ f(t) \right ]\right \}=g_{2}\left \{g _{1} \left [ y(t) \right ]\right \}

例题:

b2e927b07ecb4097a5a0543677ea813a.jpg

 对于其输入带微分的常微分方程常使用此方法求框图。当输入无微分时,可直接求框图。

8157ed348caa4feeab39e52812aeca41.jpg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值