起始点的跳变
对于线性时不变连续时间系统,通常采用常系数线性微分方程来描述系统。一般情况下,用时域经典法求微分方程的解答,应当限于的时间范围,因为在t=0时刻,系统的状态可能会出现跳变(例如:等)。
为了区分跳变前后的状态,我们以表示激励接入之前的瞬间、用表示接入之后的瞬间。
给出两组状态:
将上面这组状态称为“0-状态”或“起始状态”。
这组状态称为“0+状态”或“初始状态”,或称为“导出的起始状态”。
冲激函数匹配法
根据微分方程理论可知,求解0时刻后的系统响应,必须知道激励信号加入后瞬间的初始条件。这就设计到初始条件的计算问题,通常使用冲激函数匹配法来解决这个问题。
设描述线性时不变因果稳定系统的微分方程是:
式中均为实常数(系数),由于此方程在整个时间范围内都成立,故在任一特定时刻一定成立。
在引入冲激函数前,由于函数在不连续点(跳变点)的导数不存在,对这些点的描述困难;引入冲激函数后,解决了函数在跳变点处导数的存在问题,也就解决了微分方程的全时域成立问题。将激励信号e(t)表达式代入微分方程后,如果含有冲激函数及其各阶导数,来假设响应以及响应的各阶导数也含有对应冲激函数项。
将激励信号带入微分方程后,可以将得到的函数整理成及其各阶导数和一个有界项的代数和形式(此形式不失一般性):
注:C(t)为有界函数,对于阶跃函数u(t)也包含其中。当有界项只有阶跃函数时,可将C(t)直接写为u(t),又因为,为了区分t在的u(t),将其记作。
带入0时刻微分方程,利用冲激函数及其各阶导数的系数相等可求出系数。一般情况下n不大或冲激函数阶次不高,可直接计算各种d的值。
最后,对上述的各阶导数进行积分:
可以得到:
这样便得到0+时刻的值,即初始条件。