冲激函数匹配法

文章介绍了如何处理线性时不变连续时间系统中的跳变问题,通过冲激函数匹配法,确定在激励信号接入后瞬间的初始条件,解决微分方程在全时域的成立问题,最终计算出初始状态的值。
摘要由CSDN通过智能技术生成

起始点的跳变

对于线性时不变连续时间系统,通常采用常系数线性微分方程来描述系统。一般情况下,用时域经典法求微分方程的解答,应当限于0_{+}<t<\infty的时间范围,因为在t=0时刻,系统的状态可能会出现跳变(例如:y(0_{-})\neq y(0_{+}),{y}'(0_{-})\neq {y}'(0_{+})等)。

为了区分跳变前后的状态,我们以0_{-}表示激励接入之前的瞬间、用0_{+}表示接入之后的瞬间。

给出两组状态:

r^{(k)}(0_{-})=\left [ r(0_{-}),{r}'(0_{-}),...,r^{(n-1)} (0_{-})\right ]

将上面这组状态称为“0-状态”或“起始状态”。

r^{(k)}(0_{+})=\left [ r(0_{+}),{r}'(0_{+}),...,r^{(n-1)} (0_{+})\right ]

这组状态称为“0+状态”或“初始状态”,或称为“导出的起始状态”。


冲激函数匹配法

根据微分方程理论可知,求解0时刻后的系统响应,必须知道激励信号加入后瞬间的初始条件。这就设计到初始条件的计算问题,通常使用冲激函数匹配法来解决这个问题。

设描述线性时不变因果稳定系统的微分方程是:

\sum_{i=0}^{n}a_{i}r^{(i)}(t)=\sum_{j=0}^{k}b_{j}e^{(j)}(t)

式中a_{i},b_{i}均为实常数(系数),由于此方程在整个时间范围(-\infty ,+\infty )内都成立,故在任一特定时刻一定成立。

在引入冲激函数前,由于函数在不连续点(跳变点)的导数不存在,对这些点的描述困难;引入冲激函数后,解决了函数在跳变点处导数的存在问题,也就解决了微分方程的全时域成立问题。将激励信号e(t)表达式代入微分方程后,如果含有冲激函数及其各阶导数,来假设响应以及响应的各阶导数也含有对应冲激函数项。

将激励信号带入微分方程后,可以将得到的函数整理成\delta (t)及其各阶导数和一个有界项的代数和形式(此形式不失一般性):

\sum_{i=0}^{n}a_{i}r^{(i)}(t)=\sum_{j=0}^{k}b_{j}\delta ^{(j)}(t)+C(t),0_{-}<t<0_{+}

注:C(t)为有界函数,对于阶跃函数u(t)也包含其中。当有界项只有阶跃函数时,可将C(t)直接写为u(t),又因为0_{-}<t<0_{+},为了区分t在(-\infty ,+\infty )的u(t),将其记作\bigtriangleup u(t)

带入0时刻微分方程,利用冲激函数及其各阶导数的系数相等可求出系数。一般情况下n不大或冲激函数阶次不高,可直接计算各种d的值。

最后,对上述的各阶导数进行积分:

 可以得到:

y^{n-1}(0_{+})-y^{n-1}(0_{-})=d_{0}

 这样便得到0+时刻的值,即初始条件。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值