吴恩达机器学习作业一_单变量线性回归与多变量

这篇博客介绍了吴恩达机器学习课程中的一元和多元线性回归。通过梯度下降法求解直线最佳拟合参数,详细讲解了损失函数、参数求导及矩阵形式的表示。文中还展示了如何从文件读取数据、处理数据维度,并实现梯度下降算法来优化损失函数,最终输出拟合参数和成本值。
摘要由CSDN通过智能技术生成

单变量
1.拟合函数形式:一元线性方程,一条直线。
在这里插入图片描述

需要求两个参数,使用梯度下降的方法,使直线h最拟合数据集的点。
如图:
在这里插入图片描述

2.数据形式如下:
在这里插入图片描述
这是一部分训练数据。
3.损失函数为:
在这里插入图片描述
我们需要最小化这个损失函数。
4.对两个参数分别求偏导:
在这里插入图片描述
5.实用矩阵形式处理h函数。
在这里插入图片描述
6.求偏导之后,形式转换:(多变量公式也是这样的)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值