【运筹学】网络图总结


【基本概念解释】

 说到网络图,最让人头疼的莫过于4个概念,现在逐一解释一下。拿以下最简单的网络图为例:


ES(early start 最早开始时间)

 因为受前一个活动的影响,此活动最早能在几刻开始。比如上图中机械部分维修和电器部分维修的最早开始时间均为2。说明其最早能在第2天开始。

 计算方法:上一个活动的最早开始时间+上一个活动的持续时间。

 如果此活动前有2个并列活动,取这两个活动所得时间的较大值。

EF(early finish最早完成时间)

 此工作最早能在几刻完成,比如上图中机械部分维修的最早完成时间为7,也就是说机械部分维修最早能在第7天完成。

 同理,电器部分维修的最早完成时间为6

 计算方法:EF=ES+T,T代表此工作的持续时间

LS(last start最迟开始时间)

 为了不影响往后工作,最迟在第几天开始。比如上图中电器部分维修最迟在第3天开始。

 计算方法:LS=LF-T

LF(last finish 最迟完成时间)

 此活动最迟必须完成的时刻,否则就会影响总工期。比如电器部分维修的最迟完成时间为7。

 计算方法:LF=LS+T,T代表此工作的持续时间

【在线路中的位置】


【关键线路】

1)  总作业时间最长的线路

2)  其上的结点中,ESLF始终相等

3)  关键线路的确定:把各条可能的线路都列举出来,找其中用时最长的线路,就为关键线路。如下图:


【实例运用】


最早开始时间

上图中,各结点的最早开始时间能简单算出,比如7结点的确定:

在5——7线路中:7的ES=3

在3——7线路中:7的ES=2

取较大值,所以ES7=3

最迟完成时间

最早开始时间均求完后,把关键线路上的点的最迟结束时间补充完整。(LF=ES)

还剩3和13点的最迟结束时间没有完成。

 

以13点为例:

逆着箭头,只有17点与13点有联系。

LF13=17-2=15

 

再以3点为例:

逆着箭头方向,与3点有联系的有7和13

7——3线路中:3点的LF=3-0=3

13——3的线路中:3点的LF=15-5=10

取较小值,所以LF3=3

【普遍规律】

1计算“最早”时,顺着箭头;计算“最迟”时,逆着箭头

2

也就是说:最早开始时间取的是顺着箭头方向的上一对应值。

最晚结束时间取的是:逆着箭头方向的上一对应值。

【小结】

知识的学习是相互补充的,越来越能体会到米老师说的“动车理论”。加油!

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卡夫卡的熊kfk

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值