机器学习中的批量梯度下降与线性代数应用
在机器学习领域,模型的优化和训练是核心任务。本文将深入探讨批量梯度下降算法,以及如何运用线性代数来简化和加速模型训练过程,同时还会介绍模型的快速演进与验证方法。
批量梯度下降算法
在随机下降方法中,我们的目标是最小化单个观测值上的误差,其成本函数定义如下:
[cost_{obs}(Cnt_{obs}, Instant_{obs}, \theta_0, \theta_1) = (obs.Cnt - (\theta_0 + \theta_1 \times obs.Instant))^2]
而批量梯度下降则关注整个数据集上的平均误差,即所有单个误差的平均值。此时的成本函数为:
[cost(\theta_0, \theta_1) = \frac{1}{N} \left[ (obs_{1}.Cnt - (\theta_0 + \theta_1 \times obs_{1}.Instant))^2 + \cdots + (obs_{N}.Cnt - (\theta_0 + \theta_1 \times obs_{N}.Instant))^2 \right]]
接下来,我们需要计算成本函数关于参数 $\theta_0$ 和 $\theta_1$ 的导数。根据导数的性质,总和的导数等于各部分导数之和,因此 $\theta_1$ 的更新公式为:
[\theta_1 \leftarrow \theta_1 - \alpha \times \frac{1}{N} \left[ obs_{1}.Instant \times (obs_{1}.Instant \times \theta_1 + \theta_0 - obs