有关keras BatchNormalization需要注意的地方

文章探讨了在Keras中使用BatchNormalization层时,training参数的重要性。当training=True,moving_mean在训练过程中会更新;反之,若设置为False,它保持初始值。作者建议在实际训练中应保持training=True,模型不收敛可能是由于momentum设置不当。查阅官方文档有助于深入理解该参数。

有关keras BatchNormalization需要注意的地方

最近这两天有关keras BatchNormalization的参数问题对我造成了很大困扰,先后阅读了两篇博文keras BatchNormalization的坑,和keras BatchNormalization 之坑。这两篇文章对batchnormalization的training开不开有不同的见解。
我用下面代码进行测试training=True和False的情况:

for layer in model.layers:
    if type(layer)==type(tf.keras.layers.BatchNormalization()):
        print(layer.moving_mean)

结果发现,如果training=True或者不进行设置,moving_mean在训练后是有所变化的,但如果training=False,moving_mean保持初值,也就是为全0的矩阵。
这个结果也证实了keras BatchNormalization的坑作者的结论是正确的。实际训练时其实不需要动这个参数,如果模型不收敛,通常是momentum的值不合适。
有关keras BatchNormalization的training与trainable参数的详细说明,可以参考keras官方文档

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值