有关keras BatchNormalization需要注意的地方
最近这两天有关keras BatchNormalization的参数问题对我造成了很大困扰,先后阅读了两篇博文keras BatchNormalization的坑,和keras BatchNormalization 之坑。这两篇文章对batchnormalization的training开不开有不同的见解。
我用下面代码进行测试training=True和False的情况:
for layer in model.layers:
if type(layer)==type(tf.keras.layers.BatchNormalization()):
print(layer.moving_mean)
结果发现,如果training=True或者不进行设置,moving_mean在训练后是有所变化的,但如果training=False,moving_mean保持初值,也就是为全0的矩阵。
这个结果也证实了keras BatchNormalization的坑作者的结论是正确的。实际训练时其实不需要动这个参数,如果模型不收敛,通常是momentum的值不合适。
有关keras BatchNormalization的training与trainable参数的详细说明,可以参考keras官方文档。
文章探讨了在Keras中使用BatchNormalization层时,training参数的重要性。当training=True,moving_mean在训练过程中会更新;反之,若设置为False,它保持初始值。作者建议在实际训练中应保持training=True,模型不收敛可能是由于momentum设置不当。查阅官方文档有助于深入理解该参数。
1万+

被折叠的 条评论
为什么被折叠?



