一个坐标系可以通过一个原点OOO和三个基来e1,e2,e3\boldsymbol{e_1},\boldsymbol{e_2},\boldsymbol{e_3}e1,e2,e3确定。
那么对于世界坐标系,其原点OwO_wOw为:
Ow=(000) O_w = \left( \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array} \right) Ow=
000
其基为:
e1=(100) e2=(010) e3=(001) \boldsymbol{e_1} = \left( \begin{array}{c} 1 \\ 0 \\ 0 \\ \end{array} \right) \ \boldsymbol {e_2} = \left( \begin{array}{c} 0 \\ 1 \\ 0 \\ \end{array} \right) \ \boldsymbol {e_3} = \left( \begin{array}{c} 0 \\ 0 \\ 1 \\ \end{array} \right) e1=
100
e2=
010
e3=
001
现在设另一个坐标系OcO_cOc ,其原点坐标OcO_cOc在世界坐标系内的坐标为B=(t1,t2,t3)TB = (t_1,t_2,t_3)^{T}B=(t1,t2,t3)T,所以有:
Oc=Ow+(e1 e2 e3)(t1t2t3) O_c = O_w +\left( \begin{array}{c} \boldsymbol{e_{1}} \ \boldsymbol{e_{2}} \ \boldsymbol{e_{3}} \end{array} \right) \left( \begin{array}{c} t_1 \\ t_2 \\ t_3 \\ \end{array} \right) Oc=Ow+(e1 e2 e3)
t1t2t3
其基ec1,ec2,ec3\boldsymbol{e_{c1}},\boldsymbol{e_{c2}},\boldsymbol{e_{c3}}ec1,ec2,ec3与OwO_wOw坐标系的基e1,e2,e3\boldsymbol{e_1},\boldsymbol{e_2},\boldsymbol{e_3}e1,e2,e3的变化矩阵为:
(ec1 ec2 ec3)=(e1 e2 e3)M \left( \begin{array}{c} \boldsymbol{e_{c1}} \ \boldsymbol{e_{c2}} \ \boldsymbol{e_{c3}} \end{array} \right)= \left( \begin{array}{c} \boldsymbol{e_{1}} \ \boldsymbol{e_{2}} \ \boldsymbol{e_{3}} \end{array} \right) \boldsymbol{M} (ec1 ec2 ec3)=(e1 e2 e3)M
设一点PPP在OwO_wOw的坐标为(Xw,Yw,Zw)T(X_w,Y_w,Z_w)^T(Xw,Yw,Zw)T:
P=Ow+(ec1 ec2 ec2)(XwYwZw) P= O_w + \left( \begin{array}{c} \boldsymbol{e_{c1}} \ \boldsymbol{e_{c2}} \ \boldsymbol{e_{c2}} \end{array} \right) \left( \begin{array}{c} X_w \\ Y_w \\ Z_w \\ \end{array} \right) P=Ow+(ec1 ec2 ec2)
XwYwZw
由(3)和(4)式得:
Ow=Oc−(ec1 ec2 ec3)M−1(t1t2t3) O_w = O_c - \left( \begin{array}{c} \boldsymbol{e_{c1}} \ \boldsymbol{e_{c2}} \ \boldsymbol{e_{c3}} \end{array} \right) \boldsymbol{M^{-1}} \left( \begin{array}{c} t_1 \\ t_2 \\ t_3 \\ \end{array} \right) Ow=O

最低0.47元/天 解锁文章
2747

被折叠的 条评论
为什么被折叠?



