贝叶斯网络模型自动搭建

import numpy as np
import pandas as pd
raw_data = np.random.randint(low=0, high=2, size=(1000, 5))#生成随机数,#https://blog.csdn.net/u011851421/article/details/83544853
data = pd.DataFrame(raw_data, columns=["D", "I", "G", "L", "S"])
data.head() #返回对象的前5行,#https://blog.csdn.net/weixin_40002009/article/details/110690640
model = BayesianModel([("D", "G"), ("I", "G"), ("I", "S"), ("G", "L")])
#首先先建立贝叶斯网络结构
model.fit(data, estimator=MaximumLikelihoodEstimator)
#从数据中采用极大似然估计或者贝叶斯估计直接计算各节点的先验概率和条件概率
#这几句话已经把贝叶斯网络模型全部建立起来了。
model.get_cpds()
#可以查看和获取各节点的cpd
for cpd in model.get_cpds():
    print("CPD of {variable}:".format(variable=cpd.variable))
    print(cpd)
nx.draw(
        model,
        with_labels = True,   # 加上节点标签,即节点名字
        font_weight = "bold", # 节点标签字体加粗
        node_size = 1000,     # 节点大小(圆形)
        node_color = "y",     # 节点颜色
        pos = {"D":[2,7],"I":[6,7],"G":[4,5],"L":[4,3],"S":[8,5]}   # pos即为绘制图中各个节点的坐标值
        )

plt.text(2, 7, model.get_cpds("D"), fontsize=10, color='b')
plt.text(6, 7, model.get_cpds("I"), fontsize=10, color='b')
plt.text(1, 4, model.get_cpds("G"), fontsize=10, color='b')
plt.text(4.2, 2, model.get_cpds("L"), fontsize=10, color='b')
plt.text(7, 3.4, model.get_cpds("S"), fontsize=10, color='b')
plt.title('test')

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值