import numpy as np
import pandas as pd
raw_data = np.random.randint(low=0, high=2, size=(1000, 5))#生成随机数,#https://blog.csdn.net/u011851421/article/details/83544853
data = pd.DataFrame(raw_data, columns=["D", "I", "G", "L", "S"])
data.head() #返回对象的前5行,#https://blog.csdn.net/weixin_40002009/article/details/110690640
model = BayesianModel([("D", "G"), ("I", "G"), ("I", "S"), ("G", "L")])
#首先先建立贝叶斯网络结构
model.fit(data, estimator=MaximumLikelihoodEstimator)
#从数据中采用极大似然估计或者贝叶斯估计直接计算各节点的先验概率和条件概率
#这几句话已经把贝叶斯网络模型全部建立起来了。
model.get_cpds()
#可以查看和获取各节点的cpd
for cpd in model.get_cpds():
print("CPD of {variable}:".format(variable=cpd.variable))
print(cpd)
nx.draw(
model,
with_labels = True, # 加上节点标签,即节点名字
font_weight = "bold", # 节点标签字体加粗
node_size = 1000, # 节点大小(圆形)
node_color = "y", # 节点颜色
pos = {"D":[2,7],"I":[6,7],"G":[4,5],"L":[4,3],"S":[8,5]} # pos即为绘制图中各个节点的坐标值
)
plt.text(2, 7, model.get_cpds("D"), fontsize=10, color='b')
plt.text(6, 7, model.get_cpds("I"), fontsize=10, color='b')
plt.text(1, 4, model.get_cpds("G"), fontsize=10, color='b')
plt.text(4.2, 2, model.get_cpds("L"), fontsize=10, color='b')
plt.text(7, 3.4, model.get_cpds("S"), fontsize=10, color='b')
plt.title('test')