干货分享|PyTorch 2.0 GPU开发环境搭建

本文详细介绍了如何在Nvidia显卡上安装PyTorch2.0GPU版本,包括不同显卡系列推荐的CUDA和cuDNN版本选择,以及详细的安装步骤和验证方法。着重强调了GPU版本相对于CPU版本在深度学习性能上的优势。

在搭建PyTorch深度学习开发环境时,Python运行环境安装完毕后,接下来的重点就是安装PyTorch 2.0。由于CPU版本的PyTorch相对GPU版本的PyTorch来说,运行速度较慢,我们推荐安装GPU版本的PyTorch。

1. Nvidia 10/20/30/40系列显卡选择的GPU版本

由于40系显卡的推出,目前市场上会有Nvidia 10、20、30、40系列显卡并存的情况。对于需要调用专用编译器的PyTorch来说,不同的显卡需要安装不同的依赖计算包,我们在此总结了不同显卡的PyTorch版本以及CUDA和cuDNN的对应关系,如下图所示。

图片

注意:这里的区别主要在于显卡运算库CUDA与cuDNN的区别,当在20/30/40系列显卡上使用PyTorch时,可以安装11.6以上版本以及cuDNN 8.1以上版本的计算包,而在10系列版本的显卡上,建议优先使用2.0版本以前的PyTorch。

下面以CUDA 11.7 + cuDNN 8.2.0组合为例,演示完整的PyTorch 2.0 GPU Nvidia运行库的安装步骤,其他不同版本CUDA+cuDNN 组合的安装过程基本一致。

2. PyTorch 2.0 GPU Nvidia运行库的安装

从CPU版本的PyTorch开始深度学习之旅完全是可以的,但不是作者推荐的方式。相对于GPU版本的PyTorch来说,在运行速度方面CPU版本存在着极大的劣势,很有可能会让读者的深度学习止步于前。

如果读者的电脑不支持GPU,可以直接使用PyTorch 2.0 CPU版本的安装命令:

p

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值