随着车辆数量的不断增加,交通安全问题也日益受到关注。而车牌识别技术的应用,为交通管理和安全提供了极大的便利。近年来,深度学习技术的快速发展使得车牌识别算法在准确率和实时性方面取得了显著进展。本文将从几篇论文出发,介绍几种基于深度学习的车牌识别算法,在车牌定位、字符分割和识别等方面都有独特的优势,为实现高效、准确的车牌识别提供了新的思路和方法。
基于改进ResNet网络的有遮挡车牌识别
为了提高对有遮挡车牌的识别准确率,本文提出了一种改进深度残差网络(Deepresidual network,ResNet)损失函数的车牌识别方法。
图1 原始图像和灰度变换图像
该方法包括图像平滑处理、边缘检测、车牌定位、车牌分割和使用改进后的ResNet网络对有遮挡车牌样本库进行训练和识别等步骤。实验结果表明,使用有遮挡车牌样本库训练的改进后的ResNet网络模型具有更好的识别准确率和鲁棒性。
图2 残差学习单元