应用深度学习的车牌识别算法介绍

随着车辆数量的不断增加,交通安全问题也日益受到关注。而车牌识别技术的应用,为交通管理和安全提供了极大的便利。近年来,深度学习技术的快速发展使得车牌识别算法在准确率和实时性方面取得了显著进展。本文将从几篇论文出发,介绍几种基于深度学习的车牌识别算法,在车牌定位、字符分割和识别等方面都有独特的优势,为实现高效、准确的车牌识别提供了新的思路和方法。

基于改进ResNet网络的有遮挡车牌识别

为了提高对有遮挡车牌的识别准确率,本文提出了一种改进深度残差网络(Deepresidual network,ResNet)损失函数的车牌识别方法。

图1 原始图像和灰度变换图像

该方法包括图像平滑处理、边缘检测、车牌定位、车牌分割和使用改进后的ResNet网络对有遮挡车牌样本库进行训练和识别等步骤。实验结果表明,使用有遮挡车牌样本库训练的改进后的ResNet网络模型具有更好的识别准确率和鲁棒性。

图2 残差学习单元

目标识别是计算机视觉一个重要的研究领域,由此延伸出的车辆型号识别具有重 要的实际应用价值,特别是在当今交通状况复杂的大城市,智能交通系统成为发展趋 势,这离不开对车辆型号进行识别和分类的工作,本文围绕如何利用计算机视觉的方 法进行车辆型号的识别和分类展开了一系列研究: 本文对当前的目标识别和分类的特征和算法做了总结和归纳。分析比较了作为图 像特征描述常见的特征算子,总结归纳了他们的提取方法、特征性能以及相互之间的 关联。另外,介绍了在目标识别工作中常用的分类方法,阐述了他们各自的原理和工作 方法。研究了深度神经网络的理论依据,分析比较了深度神经网络不同的特征学习方 法,以及卷积神经网络的训练方法。分析比较不同特征学习方法的特点选取 k-means 作为本文使用的特征学习方法,利用卷积神经网络结构搭建深度学习模型,进行车辆 车型识别工作。 本文为了测试基于深度学习的车辆型号分类算法的性能在 30 个不同型号共 7158 张图片上进行实验;并在相同数据上利用改进了的 SIFT 特征匹配的算法进行对比实验; 进过实验测试,深度学习方法在进行车型分类的实验中取得 94%的正确率,并在与 SIFT 匹配实验结果对比后进一步证实:深度学习的方法能够应用在车辆型号识别领域
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值