人脸识别干货讲解:活体检测算法总结

本文探讨了人脸识别技术中的活体检测算法的重要性,包括Learning Facial Liveness Representation、3D Mask Face Presentation Attack Detection和Cross Modal Focal Loss等方法,以提升安全性和应对新型欺骗攻击。这些算法通过深度学习和多模态信息处理,增强了对未知领域攻击的泛化能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这些年,我们可以看到人脸识别在超市、高铁站、机场等场所的应用,大大提高了我们购物和出行的效率,但同时也带来了人脸识别的安全隐患,尤其是在金融支付领域。很多头部大厂都在争夺这方面的制高点,刷脸支付领域是他们的必争之地,都在研发安全性更高的人脸支付产品,彰显了活体检测的重要地位。活体检测更多知识点见文章:https://www.quickconn.net.cn/#/insight/showPaper.html?paperId=62,学习活体检测的原理与应用。

下面介绍三种较为流行、效果较好的活体检测算法。

Learning Facial Liveness Representation for Domain Generalized Face Anti-Spoofing

脸部反欺骗(FAS)的目的是将脸部欺骗攻击与真实攻击区分开来,这通常是通过学习适当的模型来完成相关的分类任务。在实践中,人们希望这种模型能够被推广到不同图像领域的FAS。此外,假设事先知道欺骗攻击的类型是不现实的。在本文中,Zih-ChingChen和Lin-HsiTsao提出了一个深度学习模型来解决上述领域通用的人脸反欺骗任务。值得一提的是,他们提出的网络能够将面部的有效性表示与不相关的表示(即面部内容和图像领域特征)分开。由此产生的活泼性表征表现出足够的领域不变性,因此它可以被应用于执行领域通用的FAS。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值