这里我们主要介绍与之前代码所不同的地方。
1)cost function
示例代码如下:
class QuadraticCost(object):
@staticmethod
def fn(a, y):
return 0.5*np.linalg.norm(a-y)**2
@staticmethod
def delta(z, a, y):
"""Return the error delta from the output layer."""
return (a-y) * sigmoid_prime(z)
这里定义了一个二次代价函数的类,你可能注意到这里用了这里静态方法@staticmethod来定义类,这样我们无需声明实例就可以调用类。这里还有一个要注意的地方就是np.linalg.norm(x, ord=None, axis=None, keepdims=False)方法,这里numpy自带的线性代数库中的求矩阵范数的方法。x表示矩阵,ord是范数类型。
class CrossEntropyCost(object):
@staticmethod
def fn(a, y):
return np.sum(np.nan_to_num(-y*np.log(a)-(1-y)*np.log(1-a)))
@staticmethod
def delta(z, a, y):
return (a-y)
这里定义了crossentropycost类。这里要注意的是nan_to_num方法,这是一个数值转化函数。在使用numpy运算数组的时候,时常会出现nan或者inf的元素,可能会造成数值计算时的一些错误。这里使用0代替数组中的nan元素,使用有限的数字代替inf元素。
你可能要问了,为什么代价函数要定义类呢?直接定义一个函数多方便。
实际上cost函数在整个算法中有两个作用:
衡量网络输出值和理想值的匹配程度。
用BP计算偏导数时,需要计算误差ξ。
因此,我们需要定义一个类来应付不同的情况。
2)权重初始化(weight initial)
示例代码如下:
def default_weight_initializer(self):
self.biases = [np.random.randn(y, 1) for y in self.sizes[1:]]
self.weights = [np.random.randn(y, x)/np.sqrt(x)
for x, y in zip(self.sizes[:-1], self.sizes[1:])]
def large_weight_initializer(self):
self.biases = [np.random.randn(y, 1) for y in self.sizes[1:]]
self.weights = [np.random.randn(y, x)
for x, y in zip(self.sizes[:-1], self.sizes[1:])]
这里又定义了一种权重初始化方式default_weight_initializer,就是我们之前所说的将权重按照正态分布N(0,1/√n)来初始化。我们可以看到这里程序中的权重矩阵randn(y,x)都除以了sqrt(x)。
3)SGD
这里的SGD函数多加了些标志位,用来监控返回各种参数的变化情况。示例代码如下:
def SGD(self, training_data, epochs, mini_batch_size, eta,
lmbda = 0.0, #规范化参数
evaluation_data=None,#验证数据
monitor_evaluation_cost=False,#验证集cost
monitor_evaluation_accuracy=False,#验证集准确率
monitor_training_cost=False,#训练集cost
monitor_training_accuracy=False):#训练集准确率
if evaluation_data: n_data = len(evaluation_data)
#如果验证集存在 对验证集求长
n = len(training_data)
evaluation_cost, evaluation_accuracy = [], []
training_cost, training_accuracy = [], []
#初始化数组
for j in range(epochs):
random.shuffle(training_data)
mini_batches = [
training_data[k:k+mini_batch_size]
for k in range(0, n, mini_batch_size)]
for mini_batch in mini_batches:
self.update_mini_batch(
mini_batch, eta, lmbda, len(training_data))
print ("Epoch %s training complete"% j)
if monitor_training_cost:
cost = self.total_cost(training_data, lmbda)
training_cost.append(cost)
print ("Cost on training data: {}".format(cost))
#如果训练集监控标志位开启,则对训练集数据计算准确率,并打印
if monitor_training_accuracy:
accuracy = self.accuracy(training_data, convert=True)
training_accuracy.append(accuracy)
print ("Accuracy on training data: {} / {}".format(
accuracy, n))
if monitor_evaluation_cost:
cost = self.total_cost(evaluation_data, lmbda, convert=True)
evaluation_cost.append(cost)
print ("Cost on evaluation data: {}".format(cost))
if monitor_evaluation_accuracy:
accuracy = self.accuracy(evaluation_data)
evaluation_accuracy.append(accuracy)
print( "Accuracy on evaluation data: {} / {}".format(
self.accuracy(evaluation_data), n_data))
print
return evaluation_cost, evaluation_accuracy, \
training_cost, training_accuracy
准确率计算函数(类似于之前的evaluate函数)如下:
def accuracy(self, data, convert=False):
if convert:
results = [(np.argmax(self.feedforward(x)), np.argmax(y))
for (x, y) in data]
#如果设置开启,那么输出最大的实际值和期望值
else:
results = [(np.argmax(self.feedforward(x)), y)
for (x, y) in data]
return sum(int(x == y) for (x, y) in results)
# 返回实际值和期望值相等的值的个数
这里要注意的是argmax(a, axis=None, out=None) 函数,这个函数的意思是返回轴axis上最大值的索引。
代价计算函数,示例代码如下:
def total_cost(self, data, lmbda, convert=False):
cost = 0.0
for x, y in data:#遍历数据中的输入值(784)和期望值(标签)
a = self.feedforward(x)
#激励输入值
if convert: y = vectorized_result(y)
#将期望值向量化
cost += self.cost.fn(a, y)/len(data)
#求平均cross-entropy代价
cost += 0.5*(lmbda/len(data))*sum(
np.linalg.norm(w)**2 for w in self.weights)
#w向量二范数的平方和
return cost
4)update_mini_batch
示例代码如下:
def update_mini_batch(self, mini_batch, eta, lmbda, n):
nabla_b = [np.zeros(b.shape) for b in self.biases]
nabla_w = [np.zeros(w.shape) for w in self.weights]
for x, y in mini_batch:
delta_nabla_b, delta_nabla_w = self.backprop(x, y)
#BP算法得到偏导数
nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
#偏导数求和
self.weights = [(1-eta*(lmbda/n))*w-(eta/len(mini_batch))*nw
for w, nw in zip(self.weights, nabla_w)]
#权重w规范化
self.biases = [b-(eta/len(mini_batch))*nb
for b, nb in zip(self.biases, nabla_b)]
这里唯一不同的就是加入了权重规范化,公式如下:
5)存储参数
示例代码如下:
def save(self, filename):
data = {"sizes": self.sizes,
"weights": [w.tolist() for w in self.weights],
"biases": [b.tolist() for b in self.biases],
"cost": str(self.cost.__name__)}
f = open(filename, "w")
json.dump(data, f)
f.close()
该方法将神经网络训练好的参数放到一个文件当中。这里要注意的是numpy.tolist()函数,这里将矩阵转化成列表保存。还有json.dump函数,将数据转化成字符存到文件中。
6)载入参数
#### Loading a Network
def load(filename):
f = open(filename, "r")
#打开文件
data = json.load(f)
#载入数据放到data中
f.close()
cost = getattr(sys.modules[__name__], data["cost"])
#根据函数名(func_name)获得对象
net = Network(data["sizes"], cost=cost)
#实例化对象,将data的大小和cost实例化
net.weights = [np.array(w) for w in data["weights"]]
net.biases = [np.array(b) for b in data["biases"]]
return net
结束。希望有志同道合的小伙伴关注我的公众平台,欢迎您的批评指正,共同交流进步。