机器学习之朴素贝叶斯:Naive Bayesian(一、算法原理)

目录

一、概率论基础

二、朴素贝叶斯

三、极大似然估计与贝叶斯估计

四、朴素贝叶斯估计实例 

五、朴素贝叶斯的常用模型

六、朴素贝叶斯的优缺点


一、概率论基础

条件概率公式:在B发生的条件下A发生的概率记作P(A|B) 

全概率公式为:

\large p(A)=p(B_{1})p(A|B_{1})+p(B_{2})p(A|B_{2})+...+p(B_{n})p(A|B_{n})=\sum_{i=1}^{n}p(B_{i})p(A|B_{i})

全概率公示的含义是:

(1)如果B1事件发生,会有一定的概率导致A发生,那么在B1发生的条件下,则A发生的概率是P(A|B1),这是条件概率公式。

(2)从最初开始考虑,A发生的概率就是 P(B1)P(A|B1)。

(3)导致A发生的情况不止有B,在B2、B3等条件下,均会导致A发生,那么综合来看,每种情况都会导致A有一定的概率发生,对A发生有贡献,所以A发生的概率是以上所有概率的和。

因为是B发生导致A发生,所以B是原因,A是结果,是典型的“由因导果”。

贝叶斯公式:\large p(B_{i}|A)=\frac{p(B_{i})p(A|B_{i})}{\sum_{j=1}^{n}p(B_{j})p(A|B_{j})} 

贝叶斯公式在某种意义上是全概率公式的相反形式,全概率公式是 “由因导果”,那么贝叶斯公式就是“执因索果”。B发生导致A发生,所以B是原因A是结果。

P(Bi)表示各种原因发生的可能性大小,故称先验概率;P(Bi|A)则反映当试验产生了结果A之后,再对各种原因概率的新认识,故称后验概率。在应用贝叶斯估计时,先验概率通常由统计获得。

二、朴素贝叶斯

朴素贝叶斯是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的数据集,首先基于特征条件独立假设学习输入和输出的联合概率分布,然后基于此模型,对于给定的输入x,求出其后验概率最大时的输出y。用于分类时,以此确定类别。朴素贝叶斯最大化后验概率的的作法,相当于期望风险最小化。

 条件独立性假设是指,假设各个特征之间没有联系,相互独立,用公式来表达就是:

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值