幂级数求和有很多方法,如常见的逐项求导逐项积分,或者其他的方法
这里想一种情况,将级数求和问题转换成微分方程,通过解出微分方程的通解,间接的求出了级数的和。
思路是这样的,通过拆分级数的形式,加加减减去掉了级数的部分(转换和函数的形式,变成题目或者你熟悉的函数展开的形式),从而就转换成了微分方程。
记住先判断收敛。
那么也就是说分成两种情况:
- 已知an通项,求级数的和
- 已知微分方程,求an通项
- 求出通解后泰勒展开,注意起始相同次数相同,多余的拿出来,那么求出来f的形式,如果你给定了初始值,那么就能写出来通项的形式。即f=对 anx的n次方 求和,开始的初值是a0
合并法则需要注意:
- 先写和的上标后写下标,原因是展开的时候一般将前几项拿出来,改变的是初始的下标,这样写着更不容易错。
- 次数不一样时候不能合并,先找次数相同的起始,多余的需要拿出去后再合并。
- 下标一致才能合并,且次数相同