举个栗子,在图像分割中,假设图像中有个人,现在我们要使用算法自动把属于人的像素标出来,标成1(换种说法是positive)。图中的真实结果代表所有真正属于人的像素,图中的预测结果代表我们的算法自动标记出来的像素,那么红色的就是两者的交集,也就是我们预测正确的值,即true positive。从直观上看,这两个区域重叠的越大越好,最好完全重叠。在这里声明一下,图中的预测结果即所有positive,但是true和false还要看像素是否包含在真是结果中,如果包含在,则是true的,即true positive,如果没有包含在,就是false的,即false positive。图中红色的即true positive,意思是这些像素本来是属于真实结果的,现在被预测成positive了,也就是true的。说完这些后,我们就可以看DICE的公式了,分子代表红色部分的两倍,分母是蓝色+绿色+2*红色。当绿蓝完全重叠时,红=绿=蓝,此时DICE为1,即分数最高。但DICE总是<=1的。
图像分割中的DICE指标
最新推荐文章于 2025-03-23 22:27:16 发布