在零售业的供应链管理中, 我们经常会遇到一些资源分配问题, 例如商品的供需平衡, 销售利润分摊, 运输成本分摊等. 常见的分配方式有平均分和按权重(比例)分. 在某些应用场景下, 我们需要体现分配方案的"公平性", 那么如何科学地定义公平性, 又如何计算公平的分配方案? 本文从合作博弈论的角度思考如何解决这些实际问题.
1. 合作博弈
考虑某个自营电商的销售场景: 电商平台(例如网易严选)从供应商采购商品, 顾客在线下单之后, 商品会通过承运商(例如顺丰)把商品送达顾客手中. 在这个销售过程中, 供应商, 电商平台和承运商三方合作从而获得销售利润. 那么我们如何"公平地"把利润分配给三方?
合作博弈论关注的核心问题就是如何对合作产生的利润(或成本)用科学的方式进行分配. 我们用二元组 ⟨ N , v ⟩ \langle N, v \rangle ⟨N,v⟩表示合作博弈(Cooperative Game), 其中记号 N , v N, v N,v的解释如下:
- N = { 1 , 2 , … , n } N=\{1, 2, \ldots, n\} N={1,2,…,n} – 参与博弈的局中人(Player)的集合
- S ⊆ N S\subseteq N S⊆N – 局中人集合的任意子集称为联盟(Coalition)
- v : 2 N → R v: 2^N \rightarrow \mathbb{R} v:2N→R – 联盟的效用函数. v ( S ) v(S) v(S)可以及理解为联盟 S S S合作产生的总收益.
问题. 给定 ⟨ N , v ⟩ \langle N, v \rangle ⟨N,v⟩, 如何把总收益 v ( N ) v(N) v(N)公平地分配给每个局中人?
不同应用场景对公平性的定义可能是不同的, 因此研究合作博弈论的一个核心问题就是研究不同分配策略的性质.
2. 分配策略
为方面描述, 我们先引入如下记号:
- x = ( x 1 , x 2 , … , x n ) x=(x_1, x_2, \ldots, x_n) x=(x1,x2,…,xn) – 分配向量(Allocation Vector), 局中人 i i i得到的收益为 x i x_i xi
- x ( S ) x(S) x(S) – 联盟 S S S分配到的收益之和, 即 x ( S ) = ∑ i ∈ S x i x(S) = \sum_{i\in S}x_i x(S)=∑i∈Sxi
下面我们介绍一些分配策略.
2.1 The Core
Core是分配向量的集合. x ∈ x\in x∈core必须满足如下条件:
- x ( N ) = v ( N ) x(N) = v(N) x(N)=v(N)
- x ( S ) ≥ v ( S ) , ∀ S ⊆ N x(S) \geq v(S), \forall S\subseteq N x(S)≥v(S),∀S⊆N.
说明
- 条件1保证所有的收益都被分配了. (没人贪污)
- 如果任意一个联盟 S ⊂ N S\subset N S⊂N想要独立门户, 即, 不跟其他人( N \ S N\backslash S N\S)合作, 那么条件2保证 S S S得到的总收益不会超过他们当前分配到的收益之和. 换句话说, 条件2保证联盟 S S S没有动机独立门户. (不合作不会赚得更多)
- core有可能是空集. 如果非空, 它包含的分配向量一般不是唯一的.
2.2 The Kernel1
Kernel也是分配向量的集合, 它从谈判的角度来定义公平性. 考虑两个局中人
i
i
i,
j
j
j, 给定分配向量
x
x
x, 定义
s
i
j
(
x
)
=
max
S
{
v
(
S
)
−
x
(
S
)
∣
i
∈
S
,
j
∉
S
,
S
⊆
N
}
.
s_{ij}(x) = \max_{S}\left\{v(S) - x(S) \mid i\in S, j\not\in S, S\subseteq N\right\}.
sij(x)=Smax{v(S)−x(S)∣i∈S,j∈S,S⊆N}.
站在局中人 i i i的角度来看, 如果他不愿意跟 j j j合作, 最多能额外获得的收益即为 s i j ( x ) s_{ij}(x) sij(x). 因此, 我们可以把 s i j ( x ) s_{ij}(x) sij(x)理解为 i i i对 j j j的谈判能力. 如果 s i j ( x ) > s j i ( x ) s_{ij}(x) > s_{ji}(x) sij(x)>sji(x), 则说明 i i i相对 j j j有可能在谈判上有优势.
x ∈ x\in x∈kernel必须满足如下条件:
- x ( N ) = v ( N ) x(N) = v(N) x(N)=v(N)
- x i ≥ v ( { i } ) x_i \geq v(\{i\}) xi≥v({i}), ∀ i ∈ N \forall i\in N ∀i∈N
- 如果 s i j ( x ) > s j i ( x ) s_{ij}(x) > s_{ji}(x) sij(x)>sji(x), 那么 x j = v ( { j } ) x_j = v(\{j\}) xj=v({j}), ∀ i , j ∈ N , i ≠ j \forall i,j \in N, i\neq j ∀i,j∈N,i=j
说明
- 条件2确保局中人 i i i分配到的收益比自己"单干"不会少.
- 把满足条件1和条件2的分配向量称为imputation.
- 条件3说如果 i i i对 j j j谈判有优势, 那么 j j j对 i i i的谈判是免疫的(因为 j j j分配到的收益等于自己单干的收益, j j j即使不合作也没有损失). 简而言之, 条件3确保任意两个不同的局中人 i i i和 j j j在谈判地位上是平等的.
- Kernel非空.
2.3 The Nucleolus2
Nucleolus与前面的概念有所区别, 它是分配向量(不是集合). 我们先给出一些记号:
- e ( S ) = v ( S ) − x ( S ) e(S) = v(S) - x(S) e(S)=v(S)−x(S), ∀ S ⊆ N \forall S\subseteq N ∀S⊆N – 代表联盟 S S S不合作能额外获得的收益
- θ ( x ) = ( e ( S ) ) S ∈ 2 N \theta(x) = (e(S))_{S\in 2^N} θ(x)=(e(S))S∈2N – 是 e ( S ) e(S) e(S)构成的向量. 设 θ ( x ) \theta(x) θ(x)的分量按照从大到小的顺序排列
考虑两个分配向量 x x x, y y y, 我们说** x x x按词典序(lexicographically)比 y y y小**, 当存在下标 k k k使得 θ k ( x ) < θ k ( y ) \theta_k(x) < \theta_k(y) θk(x)<θk(y) 且 θ i ( x ) = θ i ( y ) \theta_i(x) = \theta_i(y) θi(x)=θi(y), ∀ i < k \forall i < k ∀i<k.
Nucleolus 是按字典序最小的imputation(满足kernel的条件1和条件2).
说明
- Nucleolus的定义比较抽象. 我们用比较浅显的话来解释: nucleolus分配的思想是为了使最贫穷的局中人分配到的财富最大化, 其中"财富的多少"可以理解为公平性, 越贫穷则越不公平.
- nucleolus ∈ \in ∈ kernel
- 如果core非空, 则nucleolus ∈ \in ∈ core
2.4 The Shapley Value3
它的计算公式为:
x i = ∑ S ⊆ N \ { i } ∣ S ∣ ! ( ∣ N ∣ − ∣ S ∣ − 1 ) ! ∣ N ∣ ! ( v ( S ∪ { i } ) − v ( S ) ) , ∀ i ∈ N . x_i =\sum_{S\subseteq N\backslash \{i\}}\frac{|S|!(|N|-|S|-1)!}{|N|!}\left(v(S\cup\{i\})-v(S)\right), \quad \forall i\in N. xi=S⊆N\{i}∑∣N∣!∣S∣!(∣N∣−∣S∣−1)!(v(S∪{i})−v(S)),∀i∈N.
说明
- 给定联盟 S S S, 局中人 i i i相对 S S S的边际贡献为 v ( S ∪ { i } ) − v ( S ) v(S\cup\{i\}) - v(S) v(S∪{i})−v(S).
- 如果随机分配联盟, 那么 ∣ S ∣ ! ( ∣ N ∣ − ∣ S ∣ − 1 ) ! ∣ N ∣ ! \frac{|S|!(|N|-|S|-1)!}{|N|!} ∣N∣!∣S∣!(∣N∣−∣S∣−1)!是 i i i落入集合 S S S的概率.
- 综上所述, x i x_i xi为局中人 i i i边际贡献的期望.
3. 应用案例
下面我们列举几个在电商业务中可能应用的案例.
3.1 需求分配
假设有 n n n个仓库, 它们对同一个商品的需求分别为 d 1 , d 2 , … , d n d_1, d_2, \ldots, d_n d1,d2,…,dn. 当前该商品的采购入库总量为 E E E. 当 E < d 1 + d 2 + … + d n E<d_1+d_2 + \ldots + d_n E<d1+d2+…+dn时, 我们该如何分配需求?
为什么不建议按比例分配?
如果按比例分配, 当其中某个仓库 A A A的需求非常大时, 它分到大量商品, 而另外的仓库B可能只分到极少商品. 这样一来 A A A仓库可以销售较长时间, 相反 B B B仓库可能很快就发生缺货. 长此以往, 仓库B由于需求总量少, 可能长期无法满足, 因而一直缺货状态.
考虑什么分配方式?
详情可以参考 《破产问题 (The Bankruptcy Problem)》
3.2 车辆装车
考虑把 n n n种商品运输到一个仓库中, 每种商品的单位体积分别是 v 1 , v 2 , … , v n v_1, v_2, \ldots, v_n v1,v2,…,vn, 商品的运输量分别是 s 1 , s 2 , … , s n s_1, s_2, \ldots, s_n s1,s2,…,sn. 当前车辆可运输的总体积为 E E E. 当 E < ∑ i = 1 n v i s i E < \sum_{i=1}^n v_is_i E<∑i=1nvisi时, 我们该如何分配商品的运输量?
(令 d i = v i s i d_i=v_is_i di=visi, 这个问题是不是就转化成上面的需求分配问题了?)
3.3 成本分摊
设客户购买了三件商品, 其售价如下表所示,
商品名称 | 售价 |
---|---|
毛巾 | 20 |
手套 | 60 |
帽子 | 120 |
并使用了一张满150减20的优惠券, 因此他实际支付的订单费用是180元(不考虑运费). 那么平摊到每个商品的购买成本是多少?
为什么不建议按比例分配?
为了凑够优惠券的条件, 实际上只需要购买帽子和手套即可, 所以毛巾对凑单的实际贡献是0. 从这个角度来看, 毛巾不应该享受优惠, 它的购买成本应该按原价20计算比较合理.
考虑什么分配方式?
试试Shapley Value?
3.4 促销活动评估
考虑如下的场景: 某电商在同一天上线多个促销活动. 促销活动的集合记为 N = 1 , 2 , … , n N={1,2,\ldots, n} N=1,2,…,n. 每个促销活动对应了一些商品(同一个商品允许参加多个活动). 对任意活动的组合 S ⊆ N S\subseteq N S⊆N, 我们可以计算其参加活动商品的总销量 v ( S ) v(S) v(S). 因此, v ( N ) v(N) v(N)表示当天所有活动商品的总销量. 请问如何计算每个活动 i i i带来的销量 x i x_i xi?
考虑什么分配方式?
留给读者思考.
参考文献
M. Davis and M. Maschler. “The kernel of a cooperative game”, Naval Research Logistics Quarterly, 12 (3): 223–259, 1965. ↩︎
D. Schmeidler. “The nucleolus of a characteristic function game”, SIAM Journal on Applied Mathematics, 17 (6): 1163–1170, 1969. ↩︎
Lloyd S. Shapley. “A Value for n-person Games”. In Kuhn, H. W.; Tucker, A. W. Contributions to the Theory of Games. Annals of Mathematical Studies. 28. Princeton University Press. pp. 307–317, 1953. ↩︎