💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。
- 推荐:kwan 的首页,持续学习,不断总结,共同进步,活到老学到老
- 导航
非常期待和您一起在这个小小的网络世界里共同探索、学习和成长。💝💝💝 ✨✨ 欢迎订阅本专栏 ✨✨
博客目录
前言
本文主要介绍如何在 Windows 系统使用 Docker 部署 n8n 工作流自动平台,并添加 MCP 服务实现自动化 AI 处理任务,结合 cpolar 内网穿透工具还能轻松实现随时随地远程在线访问与使用,无需公网 IP 也不用准备云服务器那么麻烦。
n8n 是一个开源的低代码自动化工作流平台,它拥有 400 多个集成和 900 多个可以立即使用的模版,允许用户通过可视化界面连接不同的应用程序和服务,方便我们构建强大的任务自动化流程。
n8n 通过画布的方式,构建自动化工作流,可以有效减少重复性手动操作,提高工作效率。最重要它支持本地部署,保证我们数据安全。官方提供了两种方式本地部署 n8n,本例中使用 docker 方式进行部署,下面就来具体演示一下操作流程。
1.安装 Docker
首先访问Docker 官网下载地址,下载 X86_64 版本的 Docker Desktop for Windows:
其他操作系统下载与安装 Docker 可以查看这篇文章:Linux、Windows、MacOS 安装 Docker
可选: 如果想自己指定安装目录,可以打开 cmd 等终端工具使用命令行的方式 :
参数 –installation-dir=D:\Docker 可以指定安装位置:
start /w "" "Docker Desktop Installer.exe" install --installation-dir=D:\Docker
然后,在任务栏搜索功能
,勾选适用于Linux的Windows子系统
、虚拟机平台
管理员权限打开命令提示符(cmd),安装 wsl2:
wsl --set-default-version 2
wsl --update --web-download
等待 wsl 安装成功:
如因网络问题无法拉取 docker 镜像可按下方步骤操作配置镜像源:
Setting->Docker Engine->添加上换源的那一段,如下图:
"registry-mirrors":["https://hub.rat.dev","https://docker.1panel.live"],
点击应用并保存后,重新打开 docker desktop 后,左下角显示 engine running 即可正常使用 Docker。
2. 本地部署 n8n
在 n8n 的 github 主页:https://github.com/n8n-io/n8n 我们可以看到 docker 拉取并运行 n8n 容器的命令:
打开 cmd 终端,执行命令即可:
docker volume create n8n_data
docker run -it --rm --name n8n -p 5678:5678 -v n8n_data:/home/node/.n8n docker.n8n.io/n8nio/n8n
n8n 容器启动后,在浏览器中输入 http://localhost:5678
在 docker desktop 中也能看到容器信息:
访问后如果显示 n8n 注册账号页面,则说明安装成功:
3. 简单使用演示
3.1 激活 license key
填写注册信息后,点击 next 下一步:
再简单填写一下调查问题点击 get started 继续:
点击获取免费的 license key 到邮箱:
最后进入邮箱,点击激活 license key 即可。
3.2 创建 AI 工作流
在 n8n 的主界面,我们首先点击右侧的使用现成的 AI Agent 模版进行创建即可:
打开后,我们能看到提供了一个基础的工作流模版,我下面进行一下简单的修改,以便调用本地大模型进行工作:
这个工作流的流程是接受到聊天信息后传导至后边的 AI Agent 模块,然后调用聊天大模型,这里的示例使用的是 OpenAI 的模型,我在本地已经安装了 Ollama 来调用大模型,所以先将这个删除:
删除之后,点击加号,在右侧的语言模型栏中能看到 ollama chat model,选择即可:
在跳转的配置界面中,点击创建新凭证:
然后输入你的 ollama 安装设备的 IP 地址,左上方的名字也可以自定义修改:
看到连接测试成功的提示,即配置成功:
PS:为了成功远程调用本地安装的 Ollama,我们需要提前进行一下环境变量设置:
setx OLLAMA_HOST "0.0.0.0"
setx OLLAMA_ORIGINS "*"
然后重启一下 ollama 服务即可
然后,选择一下要通过 ollama 调用本地哪个大模型:(支持函数调用的模型)
然后点击返回即可:
现在可以在 n8n 主界面看到模型已经修改为了 ollama chat model:
memory 部分默认保留,tool 暂时不用管,稍后添加:
我们先用这个简单的工作流来测试一下:
运行结束后,可以看到工作流的每个节点都显示绿色的对号表示没有出错:
底部左侧能看到聊天交互中的提问与回答,在右边的日志面板中点击模型也能查看聊天记录:
3.3 安装 MCP 节点
接下来,我们可以在 n8n 中添加 MCP 节点来实现在工作流中支持 MCP 服务。
点击个人账号–设置:
点击社区节点后安装一个社区节点:
输入节点名称:n8n-nodes-mcp 勾选下面选项,点击安装:
安装完成后,需要重启一下 n8n 服务,我们现在就能在 n8n 工作流中中集成 mcp 服务了:
3.4 添加 MCP 服务
回到首页,点击刚才创建的工作流:
点击添加 tool:
输入 mcp,选择下面描述为 Use MCP client 的 MCP Client Tool:
选择后,在弹出的页面首先点击新建进行 mcp 服务的设置:
这里我们创建一个 Tavily MCP Server 进行演示,这是一款开源项目,AI 助手可以方便地利用 Tavily 提供的搜索和提取工具,获得实时网络搜索和数据提取能力,快速获取和解析网络上的信息资源。
Tavily MCP Server 的 github 主页:https://github.com/tavily-ai/tavily-mcp
在添加 Tavily MCP Server 到 n8n 工作流中之前,我们需要先获得它的安装参数与 API Key,都可以在它的 github 主页获得。
将上边的参数添加到新建的 MCP 服务配置中:
这里的环境变量需要添加的是 TAVILY_API_KEY:
三项都填好后,保存即可:
然后在跳转的页面给这个 mcp 服务重新命名一下方便识别,大家可以自定义:
修改完点击返回,可以看到已经在 tool 中添加了一个 Tavily Mcp 服务:
然后在 AI Agent 中进行一下设置修改:
将 source for prompt 选项修改为 define below,然后下面的 prompt 修改为:{{"Choose proper tool for user input:"+$json.chatInput }}
即根据用户的输入选择工具
现在我们在聊天框中向它提个问题,可以看到每个节点都正常执行工作流,并给出了答案:
到这里就成功在本地部署了 n8n 工作流平台并学习了如何调用本地大模型与添加 mcp 服务,之后你可以根据自己的需求添加其他的 mcp 服务来打造自己的全自动 AI 助手啦。
4. 安装内网穿透工具
但如果想实现不在同一网络环境下,也能随时随地在线使用 n8n 平台在网页中让 AI 助手执行任务,那就需要借助 cpolar 内网穿透工具来实现公网访问了!接下来介绍一下如何安装 cpolar 内网穿透,过程同样非常简单:
首先进入 cpolar 官网:
cpolar 官网地址: https://www.cpolar.com
点击免费使用
注册一个账号,并下载最新版本的 cpolar:
登录成功后,点击下载 cpolar 到本地并安装(一路默认安装即可)本教程选择下载 Windows 版本。
cpolar 安装成功后,在浏览器上访问 http://localhost:9200,使用 cpolar 账号登录,登录后即可看到配置界面,结下来在 WebUI 管理界面配置即可。
接下来配置一下 n8n Web UI 页面的公网地址:
登录后,点击左侧仪表盘的隧道管理——创建隧道,
- 隧道名称:n8n(可自定义命名,注意不要与已有的隧道名称重复)
- 协议:选择 http
- 本地地址:5678
- 域名类型:选择随机域名
- 地区:选择 China Top
隧道创建成功后,点击左侧的状态——在线隧道列表,查看所生成的公网访问地址,有两种访问方式。
使用上面的任意一个公网地址,在电脑或手机平板任意设备的浏览器进行登录访问,即可成功看到 n8n 的 WebUI 界面,这样一个公网地址且可以远程访问就创建好了,使用了 cpolar 的公网域名,无需自己购买云服务器,即可随时随地在网页中远程使用本地部署的 AI 工作流平台了!
小结
为了方便演示,我们在上边的操作过程中使用 cpolar 生成的 HTTP 公网地址隧道,其公网地址是随机生成的。这种随机地址的优势在于建立速度快,可以立即使用。然而,它的缺点是网址是随机生成,这个地址在 24 小时内会发生随机变化,更适合于临时使用。
如果有长期远程访问本地部署的 n8n 通过 WebUI 在线使用工作流平台,或者异地访问与使用其他本地部署的服务的需求,但又不想每天重新配置公网地址,还想让公网地址好看又好记并体验更多功能与更快的带宽,那我推荐大家选择使用固定的二级子域名方式来配置一个公网地址。
5. 配置固定公网地址
接下来演示如何为其配置固定的 HTTP 公网地址,该地址不会变化,方便分享给别人长期查看你部署的项目,而无需每天重复修改服务器地址。
配置固定 http 端口地址需要将 cpolar 升级到专业版套餐或以上。
登录 cpolar 官网,点击左侧的预留,选择保留二级子域名,设置一个二级子域名名称,点击保留:
保留成功后复制保留成功的二级子域名的名称:myn8n
,大家也可以设置自己喜欢的名称。
返回 Cpolar web UI 管理界面,点击左侧仪表盘的隧道管理——隧道列表,找到所要配置的隧道:n8n
,点击右侧的编辑:
修改隧道信息,将保留成功的二级子域名配置到隧道中
- 域名类型:选择二级子域名
- Sub Domain:填写保留成功的二级子域名:
myn8n
点击更新
(注意,点击一次更新即可,不需要重复提交)
更新完成后,打开在线隧道列表,此时可以看到公网地址已经发生变化,地址名称也变成了固定的二级子域名名称的域名:
最后,我们使用上边任意一个固定的公网地址访问,可以看到访问成功,这样一个固定且永久不变的公网地址就设置好了,可以随时随地在公网环境异地在线访问本地部署的 Open WebUI 来使用 QWQ32B 大模型了!
总结
通过以上步骤,我们实现了在 Windows 系统电脑本地安装 n8n 工作流平台,并结合 cpolar 内网穿透工具轻松实现在公网环境中使用浏览器远程访问,并为其配置固定不变的二级子域名公网地址的全部流程,经过简单测试,这款工作流平台确实效果很惊艳,非常期待它后续的发展,也感谢您的观看,有任何问题欢迎留言交流。
觉得有用的话点个赞
👍🏻
呗。
❤️❤️❤️本人水平有限,如有纰漏,欢迎各位大佬评论批评指正!😄😄😄💘💘💘如果觉得这篇文对你有帮助的话,也请给个点赞、收藏下吧,非常感谢!👍 👍 👍
🔥🔥🔥Stay Hungry Stay Foolish 道阻且长,行则将至,让我们一起加油吧!🌙🌙🌙