【TensorFlow学习一】TensorFlow全新的数据读取方式:tf.data.Dataset

官方代码:https://www.tensorflow.org/api_docs/python/tf/data/Dataset

Tensorflow中之前主要用的数据读取方式主要有

  1. 建立placeholder,然后使用feed_dict将数据feed进placeholder进行使用。使用这种方法十分灵活,可以一下子将所有数据读入内存,然后分batch进行feed;也可以建立一个Python的generator,一个batch一个batch的将数据读入,并将其feed进placeholder。这种方法很直观,用起来也比较方便灵活jian,但是这种方法的效率较低,难以满足高速计算的需求。
  2. 使用TensorFlow的QueueRunner,通过一系列的Tensor操作,将磁盘上的数据分批次读入并送入模型进行使用。这种方法效率很高,但因为其牵涉到Tensor操作,不够直观,也不方便调试,所有有时候会显得比较困难。使用这种方法时,常用的一些操作包括tf.TextLineReader,tf.FixedLengthRecordReader以及tf.decode_raw等等。如果需要循环,条件操作,还需要使用TensorFlow的tf.while_loop,tf.case等操作。这种方式,可以参考原作者之前的一篇文章:十图详解TensorFlow数据读取机制)。。同时就是cifar10的例子,可以参看https://blog.csdn.net/lyb3b3b/article/details/86315662

Dataset API同时支持从内存和硬盘的读取,相比之前的两种方法在语法上更加简洁易懂。此外,如果想要用到TensorFlow新出的Eager模式,就必须要使用Dataset API来读取数据。

tf.data.Dataset的API导入

在tf 1.3.0版本中,Dataset API是放在contrib包中的:

tf.contrib.data.Dataset
 
 

从tf 1.4.0开始该API独立出来:

tf.data.Dataset
 
 

一、基本概念:Dataset与Iterator

这里写图片描述

在初学时,我们只需要关注两个最重要的基础类:DatasetIterator

Dataset可以看作是相同类型“元素”的有序列表。在实际使用时,单个“元素”可以是向量,也可以是字符串、图片,甚至是tuple或者dict。

from_tensor_slices是这个Dataset类的一个方法

先tf.data.Dataset.from_tensor_slices产生数据集Dataset,经过实例化,才产生迭代器Iterator。

注意迭代器Iterator分为:

iterator = dataset.make_one_shot_iterator()       只能读一次

iterator = dataset.make_initializable_iterator()     (这个需要iterator.initializer初始化)


 
 
  1. import tensorflow as tf
  2. import numpy as np
  3. '''创建dataset'''
  4. dataset = tf.data.Dataset.from_tensor_slices(np.array([ 1.0, 2.0, 3.0, 4.0, 5.0]))
  5. '''实例化iterator'''
  6. iterator = dataset.make_one_shot_iterator()
  7. one_element = iterator.get_next()
  8. with tf.Session() as sess:
  9. for i in range( 5):
  10. print(sess.run(one_element)) #则输出1.0 2.0 3.0 4.0 5.0
  11. #或者
  12. #不过,make_initializable_iterator的情况需要初始化
  13. iterator = dataset.make_initializable_iterator()
  14. next_element = iterator.get_next()
  15. with tf.Session() as sess:
  16. #注意:这里多了一个初始化,
  17. sess.run(iterator.initializer)
  18. for i in range( 5):
  19. print(sess.run(next_element)) #则输出1.0 2.0 3.0 4.0 5.0

先使用dataset=tf.data.Dataset.from_tensor_slices创建dataset,然后使用iterator = dataset.make_one_shot_iterator()从dataset中实例化了一个Iterator,这个Iterator是一个“one shot iterator”,即只能从头到尾读取一次。one_element = iterator.get_next()表示从iterator里取出一个元素。上面这是非Eager模式,所以one_element只是一个Tensor,并不是一个实际的值。调用sess.run(one_element)后,才能真正地取出一个值。

且当一个dataset中的元素被读取完了,再尝试sess.run(one_element)会报tf.errors.OutOfRangeError异常,这个行为与使用队列方式读取数据的行为是一致的。在实际程序中,可以在外界捕捉这个异常以判断数据是否读取完,如:try … except语句。


 
 
  1. dataset = tf.data.Dataset.from_tensor_slices(np.array([ 1.0, 2.0, 3.0, 4.0, 5.0]))
  2. iterator = dataset.make_one_shot_iterator()
  3. one_element = iterator.get_next()
  4. with tf.Session(config=config) as sess:
  5. try:
  6. while True:
  7. print(sess.run(one_element))
  8. except tf.errors.OutOfRangeError:
  9. print( "end!")

在Eager模式中(正常都是非Eager模式)如下例,创建Iterator的方式有所不同。是通过tfe.Iterator(dataset)的形式直接创建Iterator并迭代。迭代时可以直接取出值,不需要使用sess.run():


 
 
  1. import tensorflow.contrib.eager as tfe
  2. tfe.enable_eager_execution()
  3. dataset = tf.data.Dataset.from_tensor_slices(np.array([ 1.0, 2.0, 3.0, 4.0, 5.0]))
  4. for one_element in tfe.Iterator(dataset):
  5. print(one_element)

二、高维数据集使用

tf.data.Dataset.from_tensor_slices真正的作用是切分传入Tensor的第一个维度,生成相应的dataset。

例如:

dataset = tf.data.Dataset.from_tensor_slices(np.random.uniform(size=(5, 2)))
 
 

传入的数值是一个矩阵,它的形状为(5, 2),tf.data.Dataset.from_tensor_slices就会切分它形状上的第一个维度,最后生成的dataset中一个含有5个元素,每个元素的形状是(2, ),即每个元素是矩阵的一行。

在实际使用中,我们可能还希望Dataset中的每个元素具有更复杂的形式,如每个元素是一个Python中的元组,或是Python中的词典。

例如,输入是训练集和标签的tuple,生成的每条记录也是tuple


 
 
  1. dataset = tf.contrib.data.Dataset.from_tensor_slices(
  2. ( np.random.uniform(size=( 5, 2)), np. array([ 1.0, 2.0, 3.0, 4.0, 5.0])))
  3. iterator = dataset.make_one_shot_iterator()
  4. one_element = iterator.get_next()
  5. with tf.Session() as sess:
  6. try:
  7. while True:
  8. print(sess.run(one_element))
  9. except tf.errors.OutOfRangeError:
  10. print( "end!")
  11. 输出:
  12. ( array([ 6.55877282e-04, 6.63244735e-01]), 1.0)
  13. ( array([ 0.04756927, 0.44968581]), 2.0)
  14. ( array([ 0.97841076, 0.06465231]), 3.0)
  15. ( array([ 0.46639246, 0.39146086]), 4.0)
  16. ( array([ 0.61085016, 0.61609538]), 5.0)

例如,在图像识别问题

一个元素可以是{“image”: image_tensor, “label”: label_tensor}的形式,这样处理起来更方便。
tf.data.Dataset.from_tensor_slices同样支持创建这种dataset,例如我们可以让每一个元素是一个词典。


 
 
  1. dataset = tf.contrib.data.Dataset.from_tensor_slices(
  2. {
  3. "a": np. array([ 1.0, 2.0, 3.0, 4.0, 5.0]),
  4. "b": np.random.uniform(size=( 5, 2))
  5. }
  6. )
  7. iterator = dataset.make_one_shot_iterator()
  8. one_element = iterator.get_next()
  9. with tf.Session(config=config) as sess:
  10. try:
  11. while True:
  12. print(sess.run(one_element))
  13. except tf.errors.OutOfRangeError:
  14. print( "end!")
  15. 输出:
  16. { 'a': 1.0, 'b': array([ 0.31721037, 0.33378767])}
  17. { 'a': 2.0, 'b': array([ 0.99221946, 0.65894961])}
  18. { 'a': 3.0, 'b': array([ 0.98405468, 0.11478854])}
  19. { 'a': 4.0, 'b': array([ 0.95311317, 0.57432678])}
  20. { 'a': 5.0, 'b': array([ 0.46067428, 0.19716722])}

这时函数会分别切分”a”中的数值以及”b”中的数值,最终dataset中的一个元素就是类似于{“a”: 1.0, “b”: [0.9, 0.1]}的形式。

三、对Dataset中的元素做变换

Dataset支持一类特殊的操作:Transformation。一个Dataset通过Transformation变成一个新的Dataset。通常我们可以通过Transformation完成数据变换,打乱,组成batch,生成epoch等一系列操作。
常用的Transformation有:

  • Map
  • batch
  • shuffle
  • repeat

1 .map
map接收一个函数,Dataset中的每个元素都会被当作这个函数的输入,并将函数返回值作为新的Dataset,如我们可以对dataset中每个元素的值加1:


 
 
  1. dataset = tf.data.Dataset.from_tensor_slices(np.array([ 1.0, 2.0, 3.0, 4.0, 5.0]))
  2. dataset = dataset.map( lambda x: x + 1) # 2.0, 3.0, 4.0, 5.0, 6.0

2.batch 
batch就是将多个元素组合成batch,如下面的程序将dataset中的每个元素组成了大小为32的batch:


 
 
  1. dataset = tf.data.Dataset.from_tensor_slices(
  2. {
  3. "a": np. array([ 1.0, 2.0, 3.0, 4.0, 5.0]),
  4. "b": np.random.uniform(size=( 5, 2))
  5. })
  6. dataset = dataset.batch( 2)
  7. iterator = dataset.make_one_shot_iterator()
  8. one_element = iterator.get_next()
  9. with tf.Session(config=config) as sess:
  10. try:
  11. while True:
  12. print(sess.run(one_element))
  13. except tf.errors.OutOfRangeError:
  14. print( "end!")
  15. 输出
  16. { 'a': array([ 1., 2.]), 'b': array([[ 0.87466134, 0.21519021], [ 0.6123372 , 0.95722733]])}
  17. { 'a': array([ 3., 4.]), 'b': array([[ 0.76964374, 0.22445015], [ 0.08313089, 0.60531841]])}
  18. { 'a': array([ 5.]), 'b': array([[ 0.37901654, 0.3955096 ]])}

3.shuffle 
shuffle的功能为打乱dataset中的元素,它有一个参数buffersize,表示打乱时使用的buffer的大小:

dataset = dataset.shuffle(buffer_size=10000)
 
 

4.repeat 
repeat的功能就是将整个序列重复多次,主要用来处理机器学习中的epoch,假设原先的数据是一个epoch,使用repeat(5)就可以将之变成5个epoch:

dataset = dataset.repeat(5)
 
 

如果直接调用repeat()的话,生成的序列就会无限重复下去,没有结束,因此也不会抛出tf.errors.OutOfRangeError异常:dataset = dataset.repeat()

读入磁盘图片与对应label

我们可以来考虑一个简单,但同时也非常常用的例子:读入磁盘中的图片和图片相应的label,并将其打乱,组成batch_size=32的训练样本。在训练时重复10个epoch。
官方示例程序修改而来:


 
 
  1. # 函数的功能时将filename对应的图片文件读进来,并缩放到统一的大小
  2. def _parse_function(filename, label):
  3. image_string = tf.read_file(filename)
  4. image_decoded = tf.image.decode_image(image_string)
  5. image_resized = tf.image.resize_images(image_decoded, [ 28, 28])
  6. return image_resized, label
  7. # 图片文件的列表
  8. filenames = tf.constant([ "/var/data/image1.jpg", "/var/data/image2.jpg", ...])
  9. # label[i]就是图片filenames[i]的label
  10. labels = tf.constant([ 0, 37, ...])
  11. # 此句后dataset中的一个元素是(filename, label)
  12. dataset = tf.data.Dataset.from_tensor_slices((filenames, labels))
  13. # 此句后dataset中的一个元素是(image_resized, label)
  14. dataset = dataset.map(_parse_function)
  15. # 此句后dataset中的一个元素是(image_resized_batch, label_batch)
  16. dataset = dataset.shuffle(buffersize= 1000).batch( 32).repeat( 10)

这个过程中,dataset经历三次转变:

  • 运行dataset = tf.data.Dataset.from_tensor_slices((filenames, labels))后,dataset的一个元素是(filename, label)。filename是图片的文件名,label是图片对应的标签。
  • 之后通过map,将filename对应的图片读入,并缩放为28x28的大小。此时dataset中的一个元素是(image_resized, label)。
  • 最后,dataset.shuffle(buffersize=1000).batch(32).repeat(10)的功能是:在每个epoch内将图片打乱组成大小为32的batch,并重复10次。最终,dataset中的一个元素是(image_resized_batch, label_batch),image_resized_batch的形状为(32, 28, 28, 3),而label_batch的形状为(32, ),接下来我们就可以用这两个Tensor来建立模型了。

三、Dataset的其他创建方法

除了tf.data.Dataset外,目前Dataset API还提供了另外三种创建Dataset的方式:

  • tf.data.TextLineDataset():这个函数的输入是一个文件的列表,输出是一个dataset。dataset中的每一个元素就对应了文件中的一行。可以使用这个函数来读入CSV文件。
  • tf.data.FixedLengthRecordDataset():这个函数的输入是一个文件的列表和一个record_bytes,之后dataset的每一个元素就是文件中固定字节数record_bytes的内容。通常用来读取以二进制形式保存的文件,如CIFAR10数据集就是这种形式。
  • tf.data.TFRecordDataset():顾名思义,这个函数是用来读TFRecord文件的,dataset中的每一个元素就是一个TFExample。

四、创建iterator的两种方式

一般来说就是上文中说的两种方式:

make_one_shot_iterator

在非Eager模式下,最简单的创建Iterator的方法就是通过dataset.make_one_shot_iterator()来创建一个one shot iterator。

Note: The returned iterator will be initialized automatically. A "one-shot" iterator does not currently support re-initialization.

注意:这个迭代器自动初始化,也不支持重新初始化

make_initializable_iterator

Note: The returned iterator will be in an uninitialized state, and you must run the iterator.initializer operation before using it:

注意:返回的迭代器处于未初始化状态,必须使用iterator.initializer操作初始化

initializable iterator必须要在使用前通过sess.run()来初始化。使用initializable iterator,可以将placeholder代入Iterator中,这可以方便我们通过参数快速定义新的Iterator。一个简单的initializable iterator使用示例:


 
 
  1. limit = tf.placeholder(dtype=tf.int32, shape=[])
  2. dataset = tf.data.Dataset.from_tensor_slices(tf.range( start= 0, limit= limit))
  3. iterator = dataset.make_initializable_iterator()
  4. next_element = iterator.get_next()
  5. with tf.Session() as sess:
  6. sess.run(iterator.initializer, feed_dict={ limit: 10})
  7. for i in range( 10):
  8. value = sess.run(next_element)
  9. assert i == value

此时的limit相当于一个“参数”,它规定了Dataset中数的“上限”。

initializable iterator还有一个功能:读入较大的数组。

在使用tf.data.Dataset.from_tensor_slices(array)时,实际上发生的事情是将array作为一个tf.constants保存到了计算图中。当array很大时,会导致计算图变得很大,给传输、保存带来不便。这时,我们可以用一个placeholder取代这里的array,并使用initializable iterator,只在需要时将array传进去,这样就可以避免把大数组保存在图里,示例代码为(来自官方例程):


 
 
  1. with np.load( "/var/data/training_data.npy") as data:
  2. features = data[ "features"]
  3. labels = data[ "labels"]
  4. features_placeholder = tf.placeholder(features.dtype, features.shape)
  5. labels_placeholder = tf.placeholder(labels.dtype, labels.shape)
  6. dataset = tf. data.Dataset.from_tensor_slices((features_placeholder, labels_placeholder))
  7. iterator = dataset.make_initializable_iterator()
  8. sess.run(iterator.initializer, feed_dict={features_placeholder: features,
  9. labels_placeholder: labels})

最后,这是一个相对完整的例子。

next_element = iterator.get_next() 产生了一个get_next()操作

运行一下bx_data, by_data = sess.run(next_element),则产生了一次批次的数据


 
 
  1. '''tfx和tfy占位符,其实只是用于导入np数据集。 和模型的输入没关系'''
  2. tfx = tf.placeholder(npx_train.dtype, npx_train.shape)
  3. tfy = tf.placeholder(npy_train.dtype, npy_train.shape)
  4. dataset = tf.contrib.data.Dataset.from_tensor_slices((tfx, tfy))
  5. dataset = dataset.shuffle(buffer_size= 1000) # choose data randomly from this buffer
  6. dataset = dataset.batch( 32) # batch size you will use
  7. dataset = dataset.repeat( 3) #重复3个epochs,如果是repeat(),则无限制
  8. iterator = dataset.make_initializable_iterator() # later we have to initialize this one
  9. sess = tf.Session()
  10. '''iterator必须要在使用前通过sess.run()来初始化,这里喂的数据npx_train和npy_train是np数组'''
  11. sess.run(iterator.initializer,feed_dict={tfx: npx_train, tfy: npy_train})
  12. '''netx_element是一个产生批次的operation,run()一下就产生一个批次'''
  13. next_element = iterator.get_next()
  14. 在使用的时候:
  15. bx_data, by_data = sess.run(next_element) #运行一下产生一个批次数据
  16. _, trainloss = sess.run([train, loss],feed_dict={bx:bx_data,by:by_data})

总结

本文主要介绍了Dataset API的基本架构:Dataset类和Iterator类,以及它们的基础使用方法。
在非Eager模式下,Dataset中读出的一个元素一般对应一个batch的Tensor,我们可以使用这个Tensor在计算图中构建模型。
在Eager模式下,Dataset建立Iterator的方式有所不同,此时通过读出的数据就是含有值的Tensor,方便调试。

  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值