面试题54 二叉搜索树的第k大节点(*)
题目描述: 给定一棵二叉搜索树,请找出其中第k大的节点。
示例 1:
输入: root = [3,1,4,null,2], k = 1
3
/ \
1 4
\
2
输出: 4
示例 2:
输入: root = [5,3,6,2,4,null,null,1], k = 3
5
/ \
3 6
/ \
2 4
/
1
输出: 4
限制:
1 ≤ k ≤ 二叉搜索树元素个数
- 解题思路:
/*
struct TreeNode {
int val;
struct TreeNode *left;
struct TreeNode *right;
TreeNode(int x) :
val(x), left(NULL), right(NULL) {
}
};
*/
class Solution {
public:
//中序遍历的结果就是有序序列,第K个元素就是vec[K-1]存储的节点指针;
TreeNode* KthNode(TreeNode* pRoot, unsigned int k)
{
if(pRoot==NULL||k<=0) return NULL;
vector<TreeNode*> vec;
Inorder(pRoot,vec);
if(k>vec.size())
return NULL;
return vec[k-1];
}
//中序遍历,将节点依次压入vector中
void Inorder(TreeNode* pRoot,vector<TreeNode*>& vec)
{
if(pRoot==NULL) return;
Inorder(pRoot->left,vec);
vec.push_back(pRoot);
Inorder(pRoot->right,vec);
}
};
面试题55 - I 二叉树的深度
题目描述: 输入一棵二叉树,求该树的深度。从根结点到叶结点依次经过的结点(含根、叶结点)形成树的一条路径,最长路径的长度为树的深度。
- 解题思路:
/*
struct TreeNode {
int val;
struct TreeNode *left;
struct TreeNode *right;
TreeNode(int x) :
val(x), left(NULL), right(NULL) {
}
};*/
class Solution {
public:
int TreeDepth(TreeNode* pRoot){
if(!pRoot) return 0 ;
return max(1+TreeDepth(pRoot->left), 1+TreeDepth(pRoot->right));
}
};
面试题55 - II 平衡二叉树
题目描述: 输入一棵二叉树,判断该二叉树是否是平衡二叉树。
平衡二叉树: 它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。平衡二叉树的常用实现方法有红黑树、AVL、替罪羊树、Treap、伸展树等。 最小二叉平衡树的节点的公式如下 F(n)=F(n-1)+F(n-2)+1 这个类似于一个递归的数列,可以参考Fibonacci数列,1是根节点,F(n-1)是左子树的节点数量,F(n-2)是右子树的节点数量。
- 解题思路:
//后续遍历二叉树,遍历过程中求子树高度,判断是否平衡
class Solution {
public:
bool IsBalanced(TreeNode *root, int & dep){
if(root == NULL){
return true;
}
int left = 0;
int right = 0;
if(IsBalanced(root->left,left) && IsBalanced(root->right, right)){
int dif = left - right;
if(dif<-1 || dif >1)
return false;
dep = (left > right ? left : right) + 1;
return true;
}
return false;
}
bool IsBalanced_Solution(TreeNode* pRoot) {
int dep = 0;
return IsBalanced(pRoot, dep);
}
};