控制系统建模与传递函数分析
1. 控制系统建模基础
在控制系统建模中,我们常常会遇到各种物理系统的数学描述。以一个机械平移系统为例,其运动方程可以通过牛顿第二定律来建立。假设有两个质量块 (M_1) 和 (M_2),它们之间通过弹簧和阻尼器相互连接,并且受到外力 (f(t)) 的作用。
对于质量块 (M_1),其运动方程为:
[M_1\frac{d^2x_1}{dt^2} + B_1\frac{dx_1}{dt} + B_2\frac{d}{dt}(x_1 - x_2) = f(t)]
对等式两边进行拉普拉斯变换,得到:
[[M_1s^2 + (B_1 + B_2)s]X_1(s) - B_2sX_2(s) = F(s)\quad(1.38)]
对于质量块 (M_2),其运动方程为:
[M_2\frac{d^2x_2}{dt^2} + B_2\frac{d}{dt}(x_2 - x_1) + Kx_2 = 0]
拉普拉斯变换后为:
[[M_2s^2 + B_2s + K]X_2(s) = B_2sX_1(s)]
进一步得到:
[X_1(s) = \frac{(M_2s^2 + B_2s + K)}{B_2s}X_2(s)\quad(1.39)]
将式 ((1.39)) 代入式 ((1.38)) 中,可得到:
[F(s) = \left[\frac{[M_1s^2 + (B_1 + B_2)s][M_2s^2 + B_2s + K]}{B_2s} - B_2s\right]X_2(s)]
从而得出传递函数:
[\frac{X_2}{F}(s) = \fr