全新首发:考虑多尺度序列间相关性的多元时间序列预测。
结合了频域分析和自适应图卷积算法,效果显著
特点如下:
1.
这是一种先进的深度学习模型,旨在利用频域分析和自适应图卷积捕捉多个时间尺度上不同的序列间相关性。
通过利用频域分析,有效地提取显著的周期模式,并将时间序列分解为不同的时间尺度。
2.
该模型采用自注意力机制捕获序列内的依赖关系,同时引入自适应mixhop图卷积层,在每个时间尺度内自主学习不同的序列间相关性。
3.
该模型在多个真实数据集上进行了大量实验,效果显著,且改模型具有自动学习可解释的多尺度序列间相关性的能力,即使应用于分布外样本也表现出强大的泛化能力。
多输入和单输入随意切换
单步预测和多步预测随意切换
替换CSV文件即可运行,代码运行过程中有相关
全新首发:多元时间序列预测模型的多尺度序列间相关性考虑
在当前深度学习技术的快速发展之下,对时间序列数据进行预测已经成为了一个重要的研究领域。然而,传统的时间序列预测模型通常只考虑了单一时间尺度上的序列间相关性,未能充分挖掘不同尺度之间的信息关联。为了解决这一问题,本文提出了一种基于频域分析和自适应图卷积算法的多元时间序列预测模型,旨在通过捕捉多个时间尺度上不同的序列间相关性,提高预测效果。
首先,我们的模型采用了先进的深度学习技术,结合了频域分析和自适应图卷积。通过频域分析,我们可以有效地提取出时间序列中的显著周期模式,并将时间序列分解为不同的时间尺度。这样做的好处是能够捕捉到不同尺度上的序列间相关性,提高预测的精度和准确性。
其次,我们引入了自注意力机制和自适应mixhop图卷积层,以捕获序列内的依赖关系和不同时间尺度上的序列间相关性。自注意力机制能够自动学习序列内部的关键信息,并对其进行加权处理,从而提高模型对序列内部关联的理解和预测能力。自适应mixhop图卷积层则能够在每个时间尺度内自主学习不同的序列间相关性,从而进一步提高预测的准确性和泛化能力。
最后,我们通过在多个真实数据集上进行大量实验,验证了我们提出的多元时间序列预测模型的效果和性能。实验结果表明,该模型不仅能够显著提高预测的准确性,同时还具有自动学习可解释的多尺度序列间相关性的能力。即使应用于分布外样本,该模型也表现出了强大的泛化能力。
需要特别强调的是,我们的模型具有灵活的输入设置。可以根据实际需求,随意切换多输入和单输入的模式。这样的设计使得我们的模型更加通用和适应各种场景和数据类型的预测任务。此外,模型的运行也非常简便,只需替换CSV文件即可运行,同时在代码运行过程中如果遇到任何问题,我们也随时欢迎进行沟通和交流。
总结来说,本文提出了一种基于频域分析和自适应图卷积算法的多元时间序列预测模型,通过考虑多尺度序列间相关性,进一步提高了预测的准确性和泛化能力。实验结果表明,该模型在多个真实数据集上取得了显著的效果,并且具有良好的可解释性和灵活性。因此,我们相信该模型在时间序列预测领域具有广阔的应用前景,并对该领域的研究和实践有着积极的意义。
以上是本文对全新首发的多元时间序列预测模型的多尺度序列间相关性进行的详细分析和阐述。希望本文的内容能够给读者带来一些启发和帮助,也欢迎大家进一步探讨和交流,共同促进时间序列预测领域的发展和进步。
相关代码,程序地址:http://lanzoup.cn/765085804657.html