共轭函数

共轭函数

共轭函数的定义:

设函数 f:RnR f : R n → R ,定义函数 f:RnR f ∗ : R n → R 为:

f(y)=supxdomf(yTxf(x)) f ∗ ( y ) = sup x ∈ d o m f ( y T x − f ( x ) )

此函数称为函数 f f 的共轭函数。即函数yx和函数 f(x) f ( x ) 之间差值的上确界。
如下图,两条虚线平行,函数 f1(x)=yx f 1 ( x ) = y x 是通过原点的一条直线,y是常数。下面的虚线交点
(0,f(y)) ( 0 , − f ∗ ( y ) ) ,即是两条平行线之间的y方向上的距离,即差值。
这里写图片描述

对偶范数

范数的对偶还是范数。
定义:
|||| | | ⋅ | | Rn R n 上 的范数。对应的对偶范数,用 |||| | | ⋅ | | 表示,定义为:

||z||=sup{zTx|||x||1} | | z | | ∗ = sup { z T x | | | x | | ≤ 1 }

也可以写成:
maxxzTxs.t.||x||1(37) (37) max x z T x s . t . | | x | | ≤ 1

因为范数具有非负性,因此我们也可以写成:
||z||=sup{zTx|||x||1} | | z | | ∗ = sup { z T x | | | x | | ≤ 1 }

这里写图片描述
左图表示 l2 l 2 范数对偶的示意图,很容易理解,当向量 z z x同方向时,两个向量的内积最大,即
zTx=<z,x>=|z||x|cosθ=|z|=||z||2 z T x =< z , x >= | z | | x | ⋅ c o s θ = | z | = | | z | | 2

右图表示 l1 l 1 范数对偶的示意图,当向量 z z 在实线位置,两个向量的内积最大时,向量x (1,0) ( 1 , 0 ) (对于二维情况).则:
zTx=<z,x>=|z||x|cosθ=|z|cosθ=z1 z T x =< z , x >= | z | | x | ⋅ c o s θ = | z | ⋅ c o s θ = z 1
当向量 z z 在虚线位置时:
zTx=<z,x>=|z||x|cosθ=|z|cosθ=z2
故:
zTx=max(z1,z2)=||z|| z T x = m a x ( z 1 , z 2 ) = | | z | | ∞
即: l2 l 2 范数的对偶范数还是 l2 l 2 范数, l1 l 1 的对偶范数是 l l ∞ 范数 ;
即满足:如果 lp l p lq l q 互为对偶范数,那么:

1p+1q=1 1 p + 1 q = 1

范数的共轭函数

|||| | | ⋅ | | 表示 Rn R n 上的范数,其对偶范数为 |||| | | ⋅ | | ∗ ,那么函数 f(x)=||x|| f ( x ) = | | x | | 的共轭函数为:

f(y)={0||y||1(2) (2) f ∗ ( y ) = { 0 | | y | | ∗ ≤ 1 ∞ 其 他 情 况

即范数的共轭函数是对偶范数的单位球的示性函数,即范数定义的单位球内值为0,在单位球外值为无穷大。对于损失函数来说,在单位球内损失函数为0,相当于一个ball约束,而在单位球外会导致损失函数无穷大,是不可取的。

证明:对于上左图,即对于 l2 l 2 范数的对偶,如果 ||y||>1 | | y | | ∗ > 1 ,根据对偶范数的定义,存在 zRn||z||1 z ∈ R n , | | z | | ≤ 1 ,使得 yTz>1 y T z > 1 。(这里的 y y 对应上图的z,而 z z 对应x,从图中可以看到 ||z||1 | | z | | ≤ 1 即表示单位球形区域,要使得 ||y||>1 | | y | | ∗ > 1 ,则一定满足 ||y||>1 | | y | | > 1 ,一个大于1一个小于1,很自然存在 y,z y , z ,满足 yTz>1 y T z > 1 )。取 x=tz x = t z ,并令 t t → ∞ ,可得:

yTx||x||=t(yTz||z||) y T x − | | x | | = t ( y T z − | | z | | ) → ∞

f(y)= f ∗ ( y ) = ∞ ,没有上界。反之,若 ||y||1 | | y | | ∗ ≤ 1 ,对于任意的 x x ,有yT||x||y||,即对任意 x x ,y^Tx-||x|| \leq 0x=0 处 , 函 数 y^Tx-||x||$达到最大值0.
可以通过下面的图进行一维情况的简单描述:
这里写图片描述
y>1 y > 1 时,即直线的斜率大于1时,则两个函数的差值为 ,两个函数都延伸到无穷远。当 y1 y ≤ 1 ,函数 f1(x) f 1 ( x ) 在函数 f2(x) f 2 ( x ) 的下面,并且相交,因此最大y方向上的距离为0. 对于 y<1 y < − 1 y1 y ≥ − 1 具有类似的结论。

范数的平方的共轭函数
函数:

f(x)=12||x||2 f ( x ) = 1 2 | | x | | 2

其共轭函数为:
f(y)=12||y||2 f ∗ ( y ) = 1 2 | | y | | ∗ 2

参考文献:
1 Convex Optimization_Stephen Boyd.pdf
2. 摘自:凸优化_王书宁译, 第三章 凸函数, 第3.3小节共轭函数的例3.26(102页)

  • 2
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 4
    评论
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值