凸优化学习笔记 6:共轭函数

个人博客地址 Glooow,欢迎光临~~~

1. 共轭函数

1.1 定义

一个函数 f f f共轭函数(conjugate function) 定义为
f ∗ ( y ) = sup ⁡ x ∈ dom f ( y T x − f ( x ) ) f^*(y)=\sup_{x\in\text{dom}f}(y^Tx-f(x)) f(y)=xdomfsup(yTxf(x))
在这里插入图片描述

f ∗ f^* f 是凸函数,证明也很简单,可以看成是一系列关于 y y y 的凸函数取上确界。

Remarks:实际上共轭函数与前面讲的一系列支撑超平面包围 f f f 很类似,通过 y y y 取不同的值,也就获得了不同斜率的支撑超平面,最后把 f f f 包围起来,就好像是得到了 epi  f \text{epi }f epi f 的一个闭包,如下图所示

在这里插入图片描述

1.2 性质

关于共轭函数有以下性质

  1. f f f 为凸的且是闭的( epi  f \text{epi }f epi f 为闭集),则 f ∗ ∗ = f f^{**}=f f=f (可以联系上面提到一系列支撑超平面)
  2. (Fenchel’s inequality) f ( x ) + f ∗ ( y ) ≥ x T y f(x)+f^*(y)\ge x^Ty f(x)+f(y)xTy,这可以类比均值不等式
  3. (Legendre transform)如果 f ∈ C 1 f\in C^1 fC1,且为凸的、闭的,设 x ∗ = arg ⁡ max ⁡ { y T x − f
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值