个人博客地址 Glooow,欢迎光临~~~
1. 共轭函数
1.1 定义
一个函数 f f f 的共轭函数(conjugate function) 定义为
f ∗ ( y ) = sup x ∈ dom f ( y T x − f ( x ) ) f^*(y)=\sup_{x\in\text{dom}f}(y^Tx-f(x)) f∗(y)=x∈domfsup(yTx−f(x))
f ∗ f^* f∗ 是凸函数,证明也很简单,可以看成是一系列关于 y y y 的凸函数取上确界。
Remarks:实际上共轭函数与前面讲的一系列支撑超平面包围 f f f 很类似,通过 y y y 取不同的值,也就获得了不同斜率的支撑超平面,最后把 f f f 包围起来,就好像是得到了 epi f \text{epi }f epi f 的一个闭包,如下图所示
1.2 性质
关于共轭函数有以下性质
- 若 f f f 为凸的且是闭的( epi f \text{epi }f epi f 为闭集),则 f ∗ ∗ = f f^{**}=f f∗∗=f (可以联系上面提到一系列支撑超平面)
- (Fenchel’s inequality) f ( x ) + f ∗ ( y ) ≥ x T y f(x)+f^*(y)\ge x^Ty f(x)+f∗(y)≥xTy,这可以类比均值不等式
- (Legendre transform)如果 f ∈ C 1 f\in C^1 f∈C1,且为凸的、闭的,设 x ∗ = arg max { y T x − f