mobilenetv2为什么比mobilenetv1参数少

本文探讨了卷积神经网络中特征图通道数量和扩张比例对模型参数量的影响。V1结构采用1*1*256*512再3*3*512的卷积,而V2则使用1*1*64*512、3*3*512和1*1*512*96,扩张比例为8。通过对比发现,增加通道数和扩张比例可以有效减少参数,但需注意过大扩张比例可能降低信息有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 同样是对512通道的特征图卷积
  • v1的方式是1*1*256*512再3*3*512
  • v2的方式是1*1*64*512再3*3*512再1*1*512*96,这里的扩张比例是8
  • 可以看到v2比v1少了1*1*96*512
  • 被卷积特征图的通道越多,参数减少越多;扩张比例越大,参数减少越多。
  • 考虑到获取的信息的有效性,扩张比例不应过大。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

刀么克瑟拉莫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值