大模型作为工具的使用越来越普遍,但很多人还仅仅是停留在入门阶段,远远没有发挥出大模型的真正的实力。只有熟练掌握了 Prompt Engineering(提示工程)才是高效使用大语言模型的关键。
下面我将为你提供一个从入门到精通的系统学习路径,包含核心原则、进阶技巧、实践方法和学习资源。
核心思想:转变思维模式
首先,最重要的一点是思维模式的转变:不要将模型看作一个无所不知的神,而是把它当作一个才华横溢但缺乏背景知识的实习生。
-
它有强大的能力:知识渊博,文笔好,能逻辑推理。
-
但它需要精准的指引:你不知道的,它更不知道。你需要清晰地告诉它:角色、任务、背景、要求和输出格式。
掌握了这个心态,我们再来学习具体的方法。
第一阶段:掌握基础框架与核心原则
这是写出有效 Prompt 的基石。一个好的 Prompt 通常包含以下几个要素,你可以用 CRISCO 或 RTF 等公式来记忆,但理解其本质更重要。
1. 赋予明确的「角色」
在 Prompt 开始时,为模型设定一个专业角色,可以引导它使用特定的知识库和语言风格。
-
普通:“给我讲讲气候变化。”
-
优秀:“假设你是一位资深的环境科学教授,向一位高中生讲解气候变化的主要原因、主要影响以及我们个人能采取的行动。”
2. 提供清晰的「任务指令」
你需要什么,就明确地说出来。使用祈使句,如“写出”、“总结”、“分类”、“翻译”、“推理”等。
-
模糊:“处理一下这段文本。”
-
清晰:“请将以下这段文字总结为三个要点,并用中文输出。”
3. 给出充分的「背景信息」
这是最关键的一步。模型的表现很大程度上取决于你提供的信息质量。不要指望它能猜对你的心思。
-
不足:“写一份产品描述。”
-
充分:“为我们的新产品‘智能咖啡杯’写一份电商平台用的产品描述。这款杯子主打保温(6小时)、自动搅拌和温度显示功能。目标用户是都市白领和科技爱好者。要求描述生动有趣,突出其便利性和科技感。”
4. 定义具体的「输出要求」
明确你希望得到什么形式的结果,包括格式、长度、风格等。
-
格式:“以 Markdown 列表形式输出。”
-
长度:“用不超过 200 字概括。”
-
风格:“用正式的报告文体。” 或 “用轻松幽默的口吻。”
-
示例:“请参照以下示例的格式来回答:[提供一个例子]”
5. 使用「分隔符」清晰划分结构
使用 ```, “”", ---, === 等符号将指令、背景信息和待处理内容分开,让模型能准确理解各部分信息。
请你作为一名翻译专家,将以下三重引号内的英文技术文档翻译成中文。要求专业术语准确,语言流畅,符合中文技术手册的阅读习惯。
"""
[这里粘贴你的英文原文]
"""
第二阶段:学习进阶技巧与策略
当基础 Prompt 效果不理想时,这些策略能帮你大幅提升效果。
1. 零样本、单样本和少样本提示
-
零样本:只给指令,不给例子。适用于简单任务。
-
单样本/少样本:提供1个或几个输入-输出的例子。这是攻克复杂任务的王牌技巧。模型能通过例子迅速理解你想要的格式、风格和深度。
任务:将用户评论分类为「正面」、「负面」或「中立」。
例子:
评论:“手机电池续航太差了,半天就没电。” -> 分类:负面
评论:“相机效果很棒,但价格有点高。” -> 分类:中立
评论:“物流快,包装完好,非常满意!” -> 分类:正面
现在请对以下评论进行分类:
评论:“[待分类的评论]”
2. 思维链
对于复杂推理问题,要求模型“一步一步地思考”或“展示你的推理过程”,可以极大地提高答案的准确性和逻辑性。
-
普通:“小明有5个苹果,吃了2个,又买了3个,他现在有几个苹果?”
-
思维链:“请逐步推理以下问题:小明有5个苹果,吃了2个,又买了3个,他现在有几个苹果?”
3. 迭代优化
Prompt Engineering 不是一个一次性的动作,而是一个对话和迭代的过程。
-
第一版 Prompt:可能结果不理想。
-
分析结果:是哪里不对?是太啰嗦?还是漏掉了关键信息?还是格式错了?
-
修订 Prompt:基于分析,补充指令,调整要求,然后再次询问。你可以直接说:“根据上一个回答,它太长了。请重新总结,只列出核心的三个优势。”
4. 分步骤处理
对于极其复杂的任务,不要指望一个 Prompt 就能解决。将其拆分成多个子任务,一步步完成。
-
任务:分析一篇长文章的论点和论据。
-
步骤1:“总结这篇文章的中心论点。”
-
步骤2:“提取出作者使用的三个主要论据。”
-
步骤3:“评估这些论据是否有力地支撑了论点。”
第三阶段:实践、实践、再实践
理论学得再多,不动手也是徒劳。
-
选择一个平台:ChatGPT, 通义千问,文心一言,讯飞星火等都可以。
-
从日常任务开始:
-
让 AI 帮你写工作周报。
-
让 AI 为你解释一个复杂概念。
-
让 AI 为你规划一次旅行。
-
让 AI 帮你润色邮件。
-
-
使用“游乐场”:像 OpenAI Playground 这样的平台允许你系统调整参数(如温度 Temperature),非常适合做实验。
-
建立自己的知识库:将你写过的高效 Prompt 收集起来,并记录下为什么它有效。这会成为你宝贵的财富。
第四阶段:探索专业模式与工具
当你成为熟练工后,可以关注更前沿的领域:
-
程序交互:让模型调用外部函数或 API(如 ChatGPT 的插件/函数调用功能)。
-
自主智能体:设计一系列 Prompt,让模型能够自主完成多步骤任务(如 AutoGPT)。
-
提示词工具:学习使用 Lingma、Cursor 等集成了 AI 的编程工具。
总结:精通之路
| 阶段 | 核心目标 | 关键行动 |
|---|---|---|
| 新手入门 | 写出清晰的指令 | 掌握 角色-任务-背景-输出 四要素。 |
| 熟练运用 | 解决复杂问题 | 熟练使用 少样本提示 和 思维链。 |
| 高手进阶 | 优化与自动化 | 迭代优化,任务分解,探索系统级 Prompt。 |
| 专家境界 | 创造与引领 | 设计复杂工作流,开发基于 Prompt 的应用程序。 |
最后,请记住一句心法:你给予模型的上下文和信息质量,决定了你得到答案的上限。
397

被折叠的 条评论
为什么被折叠?



